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ABSTRACT

Dynamic Analysis of Arbitrary Profile Liquid Annular Seals

and Transient Analysis with Large Eccentric Motion.

One of the main objectives of this work is to develop a new dynamic anal-
ysis for liquid annular seals with arbitrary profile and analyze a general distorted
interstage seal of the Space Shuttle Main Engine High Pressure Oxygen Turbopump
(SSME-ATD-HPOTP). The dynamic analysis developed is based on a method orig-
inally proposed by Nelson and Nguyen (1988a, 1988b). The original method used
an approximation scheme based on Fast Fourier Transforms (FFT) to compute the
circumferential gradients of the zeroth order variables of the eccentric solution. This
method, in some cases, has problems with convergence at higher eccentricities. A sim-
pler scheme based on cubic splines is found to be computationally more efficient and
has better convergence properties at higher eccentricities than the original method.
The first order solution of the original analysis is modified by including a more exact
solution that takes into account the variation of perturbed variables along the cir-
cumference. A new set of equations for dynamic analysis are derived based on this
more general model. The original method was developed for Moody’s friction model.
In the current work, a unified solution procedure that is valid for both Moody’s and
Hirs’ models is presented.

Dynamic analysis based on the above improved method is developed for three



different models; a) constant properties, b) variable properties, c) thermal effects
(energy equation) with variable properties.

Arbitrarily varying seal profiles in both axial and circumferential directions are
considered. An example case of an elliptical seal with varying degrees of axial cur-
vature is analyzed in detail. A case study based on predicted clearances (6 axial
planes with 68 clearances/plane) of an interstage seal of the SSME-ATD-HPOTP is
presented. Dynamic coefficients based on external specified load are introduced for
seals, for the first time, to analyze seals that support a pre-load.

The other objective of this work is to study the effect of large rotor displace-
ments of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting
transient motion. Currently, the linear model of the annular seal employed at NASA
Marshall Space Flight Center (MSFC) to estimate the seal forces during a transient
motion of the turbopump uses a set of § dynamic coefficients computed at zero (e=0)
eccentricity. This model, while valid for a small motion of the rotor about the cen-
tered position, may not be accurate for large off-center operation of the seal. One
of the objectives of this study is to identify the magnitude of these deviations and
establish limits of effectiveness of using such a model. This task is accomplished by
solving the dulk flow model seal governing equations directly for transient seal forces
for any given type of motion, including motion with large eccentricities.

Based on the above study, an equivalence is established between linearized co-
efficients based transient motion and the same motion as predicted by the original
governing equations. An innovative method js developed to model non-linearities in
an annular seal based on dynamic coefficients computed at various statjc eccentric-
ities. This method is thoroughly tested for various types of transient motion using

bulk flow model results as a benchmark.



TABLE OF CONTENTS

CHAPTER Page
I INTRODUCTION. . .. .. .ottt 1
1.1 Literature Survey ... ... B 1

1.2 Dynamic Analysis of an Annular Seal ... ........ 5

13 Current Work . ... .................... 8

1.4 Original Contributions . .. ................ 13

I CONSTANT PROPERTIESMODEL . . . ... ......... 15
2.1 Bulk Flow Governing Equations .. ............ 15

2.2 Friction Factors . .. .................... 18

2.3 Film Thickness . . . . .. .................. 20

2.4 Solution Procedure . .................... 23

2.5 Perturbation Analysis . ... ................ 25

2.5.1 Zeroth Order Equations . . . ............ 26

2.5.2 First Order Equations . . .............. 26

2.5.3 Linearization of Friction Factors . ......... 27

2.6 Zeroth Order Boundary Conditions . ........... 28

2.7 Solution Procedure for Zeroth Order Equations . . . ... 32

2.7.1 Comparison with Nelson and Nguyen Approach . . 33
. 2.7.2 TIterative Solution for Zeroth Order Equations . .. 34

2.7.3 Cubic Spline Interpolation . . . . . ......... 40
274 Leakage . . ... ... ............ . ... 44
2.7.5 Steady State Seal Forces . . . ............ 45
2.7.6 FrictionLoss . .................... 47
2.8 First Order Boundary Conditions . ............ 48
2.9 Solution Procedure for First Order Equations . . . .. .. 48

2.9.1 Comparison with Nelson and Nguyen’s Approach . 53
2.9.2 Boundary Conditions of Assumed Variables . ... 53

2.9.3 Solution of First Order Equations . . . . . .. ... 54
2.10 Determination of Dynamic Coefficients . . . . .... .. 54
2.11 Dynamic Coefficients based on External Load Specification 57

2.11.1 Steady State Force Equilibrium Position . . . . . . 59

III VARIABLE PROPERTIESMODEL . .............. 61



CHAPTER

v

\%

VI

Page

3.1 Thermophysical Properties Model . ......... ... 65
3.2 MBWR Equation of State. . . .. ............ . 65
3.3 Bulk Flow Governing Equations . ............. 67
3.4 Comparison with San Andres (1991) . . .......... 68
3.5 Perturbation Amalysis . .................. . 68
3.5.1 Zeroth Order Equations . . ............. 69
3.5.2 First Order Equations . .. ............. 70

3.6 Zeroth Order Boundary Conditions . e e e e 70
3.7 Reduction of Zeroth Order Equations ........... 72
3.8 Solution Procedure for Zeroth Order Equations . . . . . . 74
3.9 Reduction of First Order Equations ............ 75
3.10 First Order Boundary Conditions . ............ 7
3.11 Solution of First Order Equations ............. 77
THERMAL EFFECTSMODEL . . .. ... .......... . 80
4.1 Zeroth Order Equations . . . .. ............. . 83
4.2 Zeroth Order Boundary Conditions . .. ....... .. 83
4.3 Solution Procedure for Zeroth Order Equations . . . ., . . 85
4.4 Comparison of Current Analysis with San Andres et al. . 86
4.5 First Order Solution . . ... ...... ... ... .. . . . 87
ARBITRARY PROFILESEALS . ................ . 88
5.1 Example of an Arbitrary Profile Seal: Elliptical Seal . .. 89
92 Results . . ...... .. .. ... ... ... . .. . 92
5.2.1 Straight Elliptical Seal vs. Straight Circular Seal . 93
9.2.2 Linear Profile vs. Curved Profile . ......... 96

5.3 Case Study of a Distorted Seal of SSME-ATD-HPOTP. . 97
5.4 Directional Dependence of Dynamic Coefficients . . . . . 100
RESULTS . ..................... .. .. .. .. 110
6.1 Childs and Lindsey (1993) . ......... ... .. . 111
6.1.1 Work Summary. ............ ..., .. . 111
6.1.2 Comparative Study . ............... . 113
6.1.3 Leakage, Concentric Tests . . ... ......... 115
6.1.4 Dynamic Coefficients, Concentric Tests . . . . . . . 117
6.1.5 Leakage, Straight Seal, Eccentric Tests . . . . . . . 120

6.1.6 Dynamic Coefficients, Straight Seal, Eccentric Tests 120
6.1.7 Leakage, Slightly Convergent Seal, Eccentric . . . . 120



CHAPTER

VII

VIII

IX

6.1.8 Dynamic Coefficients, Convergent Seal, Eccen-

tricTests . .. ............. . ... .. .
6.1.9 Conclusions . . ............. .. ... ..
6.2 Childs and Kim (1985), Hirs Model . .. ....... ..
6.3 Scharrer and Nunez (1989) . ................
6.4 Scharrer and Nelson (1990) . ................
6.4.1 SmoothSeals . ................ . . .
642 RoughSeals .............. ... _ .
6.5 Jemssen (1970) . . .. .. ... ... ... ... ...
6.6 Kanki and Kawakami (1984) . ...............
6.7 Falcoetal (1984) .. ... ... ... ...... . .
6.8 Allaire etal (1976) ... ... ... ... . ... . .
6.9 Comparison of Variable Properties Model with Con-
stant Properties Model . .. ............ . . .
6.10 San Andres et al. (1992), Isothermal Case . . . . . . . . .
6.11 San Andres et al. (1992), Adiabatic Case . . . ... . ..
6.12 Comparison of Current Analysis with Other Methods
TRANSIENT ANALYSIS . ............... .. . .
7.1 Objectives ... ............... .. .. .
VARIOUS SEAL MODELS FOR TRANSIENT ANALYSIS
8.1 Transient Analysis with Bulk Flow Model . . ... .. ..
8.1.1 Transient Seal Forces with Bulk Flow Equations .
8.2 Transient Analysis with Linear Model (e=0).......
83 NewMethod-I . ................ .. .
8.3.1 StiffnessForce .. ............ ... .
8.3.2 DampingForce .. ............. . ... .
833 InmertiaForce ............... . ... ..
834 Theory ................. .. ... .
8.3.5 Evaluation of Integrals . . .. ....... . ... .
8.3.6 Summation vs. Integration . ............
8.3.7 Limitations of Method-1 . . . .. ... .. . .. .
84 NewMethod Il. . .. ....... ... .. .. .. .
841 Theory ................... . . . .
IMPLEMENTATION . . .. ............ ... .. .
9.1 Simulation Model . ............. .. .. .

Page

124
124
128
129
130
132
132
134
137
142
145



CHAPTER

X

XII

Page
9.2 Time Step for Transient Analysis . . . .. ... ..... . 193
9.3 Fluid Inertia Coefficients .. ............... . 193
9.4 Computation of Fluid Forces . .. ............. 194
9.5 Splines of Coefficients . . . .. .............. . 196
9.6 Transient Analysis Simulation Code: TRANSEAL-. ... 196
RESULTS . .......... . ... ... . .. . ... 198
10.1 Gradually Applied Loads (Ramp Function) ... .. ... 198
10.1.1 Steady State Seal Forces vs. Spring Forces . . . . . 204
10.2 Harmonic Loads (Sinusoidal Function) . . . ... ..... 206
10.3 High Frequency Loads (Sinusoidal Function) . ... ... 212
10.3.1 Fluid Inertia Forces at High Frequencies . . . . . . 213
10.4 Suddenly Applied Loads (Step Function) ...... ... 213
10.5 Impulse Loads (Impulse Function) . . ........... 222
10.6 Combination Loads . . ... ............. . . . 223
10.7 Comparison between Bulk Flow Model and Linear Model
(e=0) .. 229
10.8 Comparison between Bulk Flow Model and New Method 229
109Conclusions . . . . ............. ... ... . 230
SEALCODES . .. ................... .. .. 234
110 Tamuseal-I . ... ............. ... ... . .. 234
11.2 Tamuseal-II . . ... .. ...... .. e e e e e 234
11.3Tamuseal-IIT . . . ... ... ... ... ... ... . .. 235
4 Tamuseal- IV . . .. ... .. ........ ... . .. . 236
11.5Transeal .. .................... .. .. . 236
CONCLUSIONS . . .................. ... . ... 238
121Future Work . . ......... ... . ... .. .. . . 240
REFERENCES ..................... ... . 242
APPENDIX A . . .................... . ... . 247
APPENDIXB . .. ................ .. ... .. . 250
APPENDIXC................... ... ... . . 255



CHAPTER

APPENDIX E

APPENDIX F

APPENDIX G

----------------------------

----------------------------



TABLE

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11

9.1

LIST OF TABLES

Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=1.0
Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=0.4

Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=0.0

Scharrer and Nelson, Partially Tapered Seals (Rough), Taper=1.0 . .
Scharrer and Nelson, Partially Tapered Seals (Rough), Taper=0.4 . .

Scharrer and Nelson, Partially Tapered Seals (Rough), Taper=0.0 . .

Scharrer and Nelson, Comparison with Childs and Kim, Taper=1.0,

Rough . ... ... .

Scharrer and Nelson, Comparison with Childs and Kim, Taper=1.0,

Rough . . ... ... .. .. .

Page

112
129

130

. 132

133

133

134

135

135



FIGURE

1.1
1.2
1.3
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

2.16

LIST OF FIGURES

A Pump Annular Seal (Vance, 1991) . . . ...
Typical Seal Profiles . . ........................ .
Predicted Clearance Profile for Seal, Unit 3-01. ............
Differential Volume for Deriving the Continuity Equation . . . . . . .
Differential Volume for Deriving the Momentum Equations . . . . . .
Diagram for Deriving General Seal Clearance Expression ......
Flow Chart of Solution Procedure, Nguyen (1988) . . . ...... L.
Boundary Conditions . . . . ... ............... ... . .
Zeroth Order Boundary Conditions . . . .. ..............
Circumferential Grid . . .. . .................. ... .
Grid for Numerical Integration . .. ..................
Leakage . . ... ... ... .. ... .. ... .. ..
Steady State Seal Forces . . . ... .................. .
Force Geometry for Seal . . . ... ............... .. ..
Frictional Torque . . . .. ................. ... .. ..
Elliptical Whirl Orbit . ... ................... . . .
Perturbation Orbit . . . . ............... . ... .. .. .
Example of External Lo.ad actingonaSeal ..............
External Load and External Load Angle . . ..............

Page



FIGURE Page

3.1 Properies of Liquid Oxygenat 90°K . ................ . 63
3.2 Properies of Liquid Hydrogen at 90°K . . .. ............. 64
4.1 Zeroth Order Boundary Conditions . . . . .. ............ . 84
5.1 Examples of Seal Axial Profiles . ... ................ . 88
5.2 Elliptical Seal . . .. .. ......... ... .. ... . ... . . 91
5.3 Elliptical Seal with Various Ellipticity Factors, § .. ......... 91

5.4 Normalized Direct Stiffness for Elliptical Seal (Straight), (6=0, 6=0.4) 94

5.5 Normalized Cross Coupled Stiffness for Elliptical Seal (Straight),
(6=0,6=04) . ............... ... ... .. 94

5.6 Normalized Direct Damping for Elliptical Seal (Straight), (6=0, 6=0.4) 95

5.7 Normalized Leakage for Elliptical Seal (Straight), (6=0, 6=0.4) ... 95

5.8 Normalized Direct Stiffness for Elliptical Seal (Curved) . . ... ... 98
5.9 Normalized Cross Coupled Stiffness for Elliptical Seal (Curved) ... 98
5.10 Normalized Direct Damping for Elliptical Seal (Curved) ....... 99
5.11 Normalized Leakage for Elliptical Seal (Curved) . . ... ....... 99
5.12 Load vs. Eccentricity for Distorted Seal, Unit 3-01 . ......... 101
5.13 Leakage for Distorted Seal, Unit 3-01. . .. .............. 101
5.14 Direct Stiffness for Distorted Seal, Unit 3-01......... e ... 102
5.15 Cross Coupled Stiffness for Distorted Seal, Unit 3-01 . ........ 102
5.16 Direct Damping for Distorted Seal, Unit 3-01 . .. .. ........ 103

5.17 Definition of Angle of Line of Centers and Eccentricity Angle . ... 104

5.18 Rotor and Minimum Film Thickness Coordinate Systems . . .. ... 104



FIGURE Page

5.19 Variation of K,. for Elliptical Seal . .. ................ 107
5.20 Variation of k., for Elliptical Seal . . . . ................ 107
5.21 Variation of C,, for Elliptical Seal . .................. 108
6.1 Leakage, Childs and Lindsey, Concentric Tests . . . . . ... .. ... 116

6.2 Dynamic Coefficients, Childs and Lindsey, Concentric (10200 rpm) . 118
6.3 Dynamic Coefficients, Childs and Lindsey, Concentric (17400 rpm) . 119
6.4 Leakage, Childs and Lindsey, Straight Seal, Eccentric Tests . . . . . . 121

6.5 Dynamic Coefficients, Childs and Lindsey, Straight Seal, Eccentric
(10200 rpm) . . . .. .. . 122

6.6 Dynamic Coefficients, Childs and Lindsey, Straight Seal, Eccentric
(17400 rpm) . . o ot ot 123

6.7 Leakage, Childs and Lindsey, Convergent Seal, Eccentric Tests . . . . 125

6.8 Dynamic Coefficients, Childs and Lindsey, Convergent Seal, Ec-

centric (10200 rpm) . . . . . ... ... 126
6.9 Dynamic Coefficients, Childs and Lindsey, Convergent Seal, Ec-

centric (17400 rpm) . . .. ..... .. ... .. 127
6.10 Scharrer and Nelson, A Partially Tapered Annular Seal . . . . . . . . 131
6.11. Seal Force at 3000 rpm, Jenssen . . . . ... .............. 137
6.12 Seal Force at 5000 rpm, Jenssen . . . . . .. .............. 138
6.13 Seal Force at 7000 rpm, Jenssen . . . . . .. .. ... ... 0., 138
6.14 Seal Force, F, for Kanki and Kawakami . ... ............ 140
6.15 Direct Stiffness, K., K, for Kanki and Kawakami . . ... .. ... 140
6.16 Cross Coupled Stiffness, k.,, k. for Kanki and Kawakami . . . . . . 141

6.17 Direct Damping, Cee, C,,, for Kanki and Kawakami . . .. .. ... 141



FIGURE Page

6.18 Cross Coupled Damping, Czys Cye for Kanki and Kawakami . . . . . . 142
6.19 Direct Stiffness K,,, Ky, forFalcoetal ................ 143
6.20 Cross Coupled Stiffness k,,, ky. for Falcoetal. ............ 143
6.21 Direct Damping, C,., Cy,, for Falcoetal. . .............. 144
6.22 Direct Inertia, M,., M, for Falcoetal. ................ 144
6.23 Leakage, Q,for Falcoetal. ... .................. .. 145
6.24 Direct Stiffness, K,., Ky, for Allaire et al.. .. ... ......... 146
6.25 Cross Coupled Stiffness, kay, k., for Allaire et al. . . . . .. .. ... 146
6.26 Direct Damping, C,,, Cy for Allaire etal. . . . ............ 147
6.27 Direct Stiffness K., K., for Seal Unit 3-01 . . . ... ..... ... 148
6.28 Cross Coupled Stiffness key, kye, for Seal Unit 3-01 . ... ...... 148
6.29 Direct Damping, C.., Cy, for Seal Unit 3-01. . .......... .. 149
6.30 Direct Inertia, M,., Mw for Seal Unit 3-01 .. ............ 149
6.31 Seal Force, F, for Seal Unit 3-01 . .................. . 150
6.32  Leakage, Q, for Seal Unit 3-01 . .. ............. . . . 150
6.33 Direct Stiffness K., K, for San Andres, Isothermal . . . . .. ... 152
6.34  Cross Coupled Stiffness kuy, kye, for San Andres, Isothermal . . . . . 152
6.35 Direct Damping, C,., Cyy for San Andres, Isothermal . . . . . . . .. 153
6.36 Direct Inertia, M,., M,, for San Andres, Isothermal . .. ... ... 153
6.37 Seal Force, F, for San Andres, Isothermal . .. ............ 154
6.38 Leakage, Q, for San Andres, Isothermal .. .............. 154

6.39 Temperature Rise, San Andres, Adiabatic . .............. 155



FIGURE Page

6.40 Frictional Torque, San Andres, Adiabatic. . .. ...... ... . . 155
6.41 Leakage, San Andres, Adiabatic . . . .. ......... ... . 156
6.42 Stiffness, San Andres, Adiabatic. . . ... ............ 156
6.43 Damping, San Andres, Adiabatic . . ............... 157
7.1 Circumferential Grid for Seal Coefficient Mapping . . .. ....... 161
7.2 Variation of K,, for unit 3-02 as a function of rotor position . . . . . 163
7.3 Variation of C,, for unit 3-02 as a function of rotor position . . . . . 164
7.4 Variation of k., for unit 3-02 as a function of rotor position . . . . . 165
7.5 Eccentric Motion: Typel . ... ... ... ... . ... ... .. 167
7.6 Eccentric Motion: Type 2 . .. ......... ... ... . .. 167
8.1 Various Models for Transient Anpalysis . ............ . .. . 171
8.2 SDOF Spring-Mass-Damper System . ............... . 176
8.3 Seal Model for a 2 DOF Vibration Model . .. .......... 177
8.4 Stiffness Force Integral . . . . .......... .. ... .. _ 182
8.5 Damping Force Integral . ................ ... 182
8.6 Inertia Force Integral . . . . ... ........... ... .. . 183
9.1 Simulation Model . . . . .. ..., .. ... . ... .. .. . 191
9.2 Rotor-Seal Model used for Simulation . .............. 191

10.1 Gradually Applied Load, 1780 N (400 1b), Disp. (v), Seal Force (Fy) 200
10.2 Gradually Applied Load, 5340 N (1200 1b), Disp. (y), Seal Force (Fy) 201
10.3 Gradually Applied Load, 8900 N (2000 1b), Disp. (y), Seal Force (Fy) 202

10.4 Steady State Seal Forces for Seal Unit 3-02, from Seal Code . . . .. 205



FIGURE Page

10.5 Steady State Seal Forces vs. Spring Forces, New Methods-1,2 . . .. 205
10.6 Harmonic Load, 1780N (400lb) at 100Hz, Disp. (¥), Seal Force (Fy) . 208
10.7 Harmonic Load, 3560N (8001b) at 100Hz, Disp. (y), seal Force (Fy) . 209
10.8 Harmonic Load, 5340N (12001b) at 100Hz, Disp. (y), seal Force (Fy) 210

10.9 Harmonic Load (eccentric), 1340N (300lb), 100Hz, Disp. (y),
Force (Fy). . .. ... . 211

10.10  High Frequency Load, 2225N (500Ib) at 500Hz, Disp. (y), Seal
Force(Fy) 214

10.11  High Frequency Load, 15570N (35001b) at 500Hz, Disp. (y), Force (Fy)215

10.12  High Frequency Load (eccentric), 4450N at 500Hz, Disp. (y),
Force (Fy). ... ... .. . 216

10.13  High Frequency Load, 17800N (40001b) at 1000Hz Disp. (y), Force (Fy)217

10.14  High Frequency Load, 35600N (8000lb) at 1000Hz, Disp. (y),
Force (Fy). ... ... ... ... .. . . . . . . 218

10.15  Suddenly Applied Load, 1780N (4001b), Disp. (y), seal Force (Fy) . . 219
10.16  Suddenly Applied Load, 3560N (800Ib), Disp. (y), Seal Force (Fy). . 220

10.17  Suddenly Applied Load, 5340N (12001b), Disp. (y), Seal Force (Fy) . 221

10.18  Impulse Load, 2225N-ms (5001b-ms), Disp. (y), Seal Force (Fy) ... 224
10.19  Impulse Load, 4450N-ms (10001b-ms), Disp. (y), Seal Force (Fy) .. 225
10.20  Impulse Load, 8000N-ms (1800lb-ms), Disp. (¥), Seal Force (Fy) .. 226

10.21  Impulse Load (eccentric), 2225N-ms (5001b-ms), Disp. (y), Force (Fy) 227
10.22  Combination Loads, Disp. (y), Seal Force (Fy) ............ 228
10.23  Limitations of Method-I: Discontinuities in Integrals .. ....... 231

10.24  Limitations of Method-I: Dependence on At . . . .. ......... 231



co
Ciy Ce

Cez, Cyy

G2y Gm

c(z,8)

[C]

e

(e, ¢)

fer fo

Fiuid—es Fiivid-y
fezes foy

feovs feve

Jizes fimy

Jazys Sieye

fmezy fry

fmcw fmyz

f

F.,F,
Fe(t), Fy(t)
F.

F,

h

I

psr

Ku, Kw

NOMENCLATURE
nominal clearance (m)
inlet and exit clearances (m)
direct damping coefficients (N-s/m)
cross coupled damping coefficients (N-s/m)
clearance function
damping matrix
eccentricity (m)
di#placement (eccentricity) of center of rotor
friction coefficients (Moody’s or Hirs’)
seal reaction force components (N)
direct damping forces (N)
cross coupled damping forces (N)
direct stiffness forces (N)
cross coupled stiffness forces (N)
direct inertia forces (N)
cross coupled inertia forces (N)
circular frequency (Hz)
X and Y components of seal force (N)
components of time varying external load (N)
constant load applied to the rotor (N)
amplitude of sinusoidal load function (N )
fluid film thickness (m)
impulse function (N-s)
pre-swirl ratio

direct stiffness coefficients (N/m)



key, kye cross coupled stiffness coefficients (N/m)

(K] stiffness matrix

L length of the seal (m)

M., M, direct mass coefficients (kg)

My, Mye cross coupled mass coefficients (kg)
[M] mass matrix

pi inlet pressure (Pa)

Pe exit pressure (Pa)

[Q] transformation matrix

R radius of the rotor (m)

tn . . time period of the system (s)

t time (s)

t, rise time of the applied load (s)

u bulk flow axial velocity (m/s)

v bulk flow circumferential velocity (m/s)
w wR, rotor surface velocity, (m/s)

(z,y) displacement (eccentricity) of center of rotor (m)
(z,9) velocity of center of rotor (m/s)

(2,9) acceleration of center of rotor (m/s?)
z,B axial and circumferential coordinates

P density (kg/m®)

dynamic viscosity (Pa-s)

€ eccentricity ratio
¢ _eccentricity angle (rad)
5 ellipticity, (cx — ¢,)/ce

(6z,6y) small change in displacements



(62,8y) small change in velocities (m/s)

(62, 89) small change in accelerations (m/ 52)

AF,,AF, X and Y components of incremental seal force (N)
At time step for transient analysis (s)

& inlet loss coefficient

€. exit pressure recovery coefficient

w angular frequency (rad/s)



CHAPTER I

INTRODUCTION

Annular seals are used in turbomachinery to reduce excessive leakage of the working
fluid from high pressure side to the low pressure side. The schematic in Figure 1.1
shows a typical seal application. The working fluid is forced to leak from a high
pressure region to the low pressure region through the stator-rotor interface and the
function of a seal is to reduce this leakage. Even though, their main purpose is to
inhibit leakage, the main interest in seals from a rotordynamic point of view arise from
the fact that the fluid forces in a seal can have a strong influence on the dynamic
characteristics of the turbomachine, directly affecting the performance of the machine.
Depending on a number of parameters that go into the design of a seal, these fluid
forces may act to stabilize the rotor system, or worse, work to destabilize the system.

Typical annular seal profiles are shown in Figure 1.2. Seals are classified based
on the shape of the clearance profile. A seal with a constant clearance is a straight
seal and that with a linearly varying profile is a tapered seal. A tapered seal may
be either a convergent seal or a divergent seal depending on its slope relative to the

direction of flow as shown in Figure 1.2.

1.1 Literature Survey

Extensive work has been done in the past two decades to understand the dynamic
behavior of seals. Nguyen ( 1988), provides a complete overview of the work done by
various researchers in this area in the past twenty years. Starting with Black’s (1969)

analysis of high-pressure seals, followed by Allaire’s (1976) eccentric seal analysis and

Journal model is Transactions of ASME Journal of Tribology.



Figure 1.1 A Pump Annular Seal (Vance, 1991)
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Childs’ (1985) Hirs' bulk flow analysis for tapered seals, there has been a steady
improvement in the modeling of annular seals and the agreement of their predicted
behavior with experimental results.

Of the recent work, Simon and Frene (1989) and later San Andres (1991) ex-
tended seal analysis to include variable fluid properties for cryogenic applications.
Nelson and Nguyen (1988.3,1988b) are generally credited with developing the first
finite length eccentric solution for annular seals. A numerical solution is developed
in terms of functions of Fast Fourier Transforms (FFT) which are used to compute
the circumferential gradients of primary variables. The analysis agreed well with
the experimental data. A improved formulation of this methnd is the basis for the
current work. Yang et al. (1992) developed an apppexifhate thermohydrodynamic
(THD) analysis for cryogenic seals. This analysis includes an approximate steady
state solution for a centered seal. San Andres et al (1992) provided a full set of gov-
erning equations for THD analysis based on a turbulent bulk flow model along with

a numerical solution based on a finite difference (FDM) formulation.

Typically, an interstage seal of the Space Shuttle Main Engine High Pressure
Oxygen Turbopump (SSME-ATD-HPOTP) is designed either as a straight or a ta-
pered (convergent) seal over its entire length as shown in Figure 1.2. Tests of these
seals after a period of operation have revealed a considerable change in their clearance
profile from their original design clearance profile. Some of these distortions are due
to assembly and operating interferences (Scharrer and Nunez, 1989) and others are
due to mechanical and thermal stresses acting on the housing (Scharrer and Nelson,
1990) as the machine reaches and operates about its full power level (FPL).

The effect of seal distortions on rotordynamic coefficients was first considered by

Sharrer and Nunez (1989). They reported that a 2-D, axisymmetric, finite element
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analysis which considered the interna] pressure distribution, and the boundary condi-
tions due to assembly and operating interferences produced a clearance profile which
was wovy and different from the nominal design tapered profile.

" This distorted seal profile in the axial direction was fitted with a clearance func-

tion in the form of a polynomial as,
h(z) = a1 + a2z + a2 + a42° + a5zt (1.1)

where the coefficients a;, az, *+- etc., are coeflicients chosen to fit the distorted axjal
profile. .

They adapted the analysis of a plain seal to the case of a wavy profile seal. They
reported a marked change in the computed rotordynamic coefficients due to a change
in the seal profile. San Andres (1991) repeated the above study using a variable fluid
properties model and reported similar results.

Scharrer and Nelson (1990) treated this distortion problem using a partially
tapered seal model. Instead of treating the distortions as a polynomial function, they
tried to correct the predicted distortions by machining out the undesirable distortions
at the design stage itself. The model they used to accomplish this is a seal with a
taper on part of length of the seal. Using this model, they conducted a parametric
study of various performance characteristics as a function of taper length to total
length ratio (T/L). Based on this study they recommended optimum ratio of T/L for
best performance of these distorted seals from a rotordynamic point of view.

Iwatsubo and Yang (1987) considered the effects of elastic deformation of the
shaft and the seal housing due to high pressure difference, typical of a high pressure
annular seal, and obtained dynamic coefficients based on this model. They reported
that the direct stiffness is significa.ntly changed when the elastic deformation is jn-
cluded. Childs (1987) studied the effects of variable radii and arbitrary clearance



function on fluid forces developed in pump impeller shrouds.

All the work reported in the literature on distortions in seals is limited to dis-
tortion along the length of the seal. Detailed thermo-elastic studies based on a finite
element model of the entire turbopump have revealed that seal distortion is not lim-
ited to axial direction and a considerable distortion occurs along the circumference
also.

An example predicted seal profile of an interstage seal of SSME-ATD-HPOTP
from a thermo-elastic finite element study of the entire pump is shown in F igure 1.3.
In this figure, the seal is stretched out 360°, and Z is the longitudinal axis of the seal.
The seal, initially designed as a convergent seal, is severely distorted both in the axial

direction as well as in the circumferential direction.

1.2 Dynamic Analysis of an Annular Seal

The main objective of this work is to develop a dynamic analysis for liquid annu-
lar seals with arbitrary profile and analyze a general distorted interstage seal of the
SSME-ATD-HPOTP. The essentials of dynamic analysis of an annular seal are ex-
plained below.

The main objective of dynamic analysis of an annular seal is to estimate the
coeflicients of the linearized force-motion model of a seal shown in Eq 1.2, for a small
motion of the rotor. The model shown in Eq. 1.2 is for a two degree of freedom
(2-DOF) vibration model. There are more complex models available that include
additional degrees of freedom, but the 2-DOF mode] in Eq. 1.2 is the most widely

used one in seal literature to correlate theoretical and experimental data.

AF, Koz ke bz N Cee oy bz
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Figure 1.3 Predicted Clearance Profile for Seal, Unit 3-01
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In this equation, (6z,5y) are the displacements, (§z,6y) are the velocities and
(62, 67) are the accelerations in the X and Y directions respectively of the center of
the rotor, relative to a static operating point (z,y). The fluid force terms AF, and
AF, are the incremental or perturbed fluid forces for a small motion of the rotor
shaft about (z,y). These force components, in general, vary as a function of rotor
displacement, translational velocity and acceleration and are linear only for small
orbital motion of the rotor. |

In this model, K,,, key, kyzy K,y are the linearized stiffness coeflicients, C,.,
Ceys Cyey Cyy are the linearized damping coefficients and M,,, Mey, My and My,
are the linearized added mass or inertia coefficients at the static operating point or
eccentricity (z,y).

In the linearized model, the terms [Kez6z] and (K, 8y] account for the incremen-
tal fluid reaction forces of the seal due to a small displacement of the rotor (§z, 8y).
The term (k. éy] is the cross coupled force in the X direction due to a displacement
by in the Y direction. Similarly, [k,.6z] is the cross coupled force in the Y direction
due to a displacement §z in the X direction. These cross coupled forces arise out of
circumferential velocity and are a source of instability in rotor systems. The terms
[Cz262] and [C,, 6y] represent the incremental damping forces due to a small velocity
change (6z,6y). Damping forces tend to have the opposite effect to that of cross
coupled forces and their net effect is to add to the stability of the system. The terms
[Me26Z] and [M,,67) are the incremental fluid inertia forces due to a small change

in acceleration (6z,6g). For a concentric seal, Kee = Ky, key = ky, etc., reducing

the number of coefficients from twelve to six. Typically, for an annular seal, the



important coefficients are direct stiffness, cross coupled stiffness, direct damping and
direct mass. The contributions of other terms are negligible in most cases compared
to these terms.

These coefficients are estimated by fitting the perturbed fluid forces AF, and
AF; due to a small perturbed motion about a steady state position (z,y) to the
linearized model in Eq. 1.2. These twelve coefficients together provide a dynamic
model of the seal for a small motion of the rotor and this model may be used to
predict the fluid forces acting on the rotor in vibration-response models and rotor

stability analysis.

1.3 Current Work

The dynamic analysis developed in this work is based on a method originally proposed
by Nelson and Nguyen (1988a, 1988b). They are credited (Childs, 1993) with devel-
oping the first finite length eccentric solution for annular seals.The original analysis
showed good agreement with experimental results.

The original method proposed a method in which the governing nonlinear PDEs
modeling the turbulent bulk flow in an angular seal are reduced to a set of ordinary
differential equations by using an approximation scheme for computing the circum-
ferential gradients of the primary variables. With this assumption, the order of the
problem is reduced by one, i.e., from a 2-D to a 1-D problem and essentially the
problem is reduced to solving a set of ordinary differential equations for which the-
ory is well developed. This reduction in computational complexity by-an ordereof —

—magnitwde is the main advantage of this method compared to a 2-D finite difference
method (FDM) or finite element method (FEM) formulation of the same problem.

In the current work, the zeroth order and first order solutions of this original



analysis are improved to make the overall solution more accurate and computationally
more efficient and eliminate some of the reported problems with the original method.

The original method used an innovative approximation scheme based on Fast
Fourier Transforms (FFT) to compute the circumferential gradients of the zeroth
order variables of the eccentric solution. The number of trigonometric functions
included in the approximation is equal to the number of circumferential grid points.
It has been reported (San Andres, 1991) that this method requires a considerable
number of trigonometric functions for accurate solution at high ecccntri.cities. Nguyen
(1988) also reported problems with convergence at higher eccentricities in some cases,
possibly due to the truncation error introduced by including only a finite number of
functions. In addition, another disadvantage with trigonometric functions used in the
original method is the very CPU intensive nature of their computation.

A simpler scheme based on cubjc splines is found to be computationally more
efficient since it does away with trigonometric functions and it also does not require as
many circumferential grid points as the original method for a given accuracy tolerance.
The increase in accuracy with cubic spline based approximation scheme also reflects
in better 'convergence properties at higher eccentricities compared to the original
method. This fact is verified by the successful analysis of cases with the new approach
where the original method had failed.

This first order solution of the original analysis is modified by including a more
exact solution that takes into account the variation of perturbed variables along the
circumference. This improved analysis show better agreement with experimental
results than earlier analysis, particularly at higher eccentricities. The new analysis
developed treats these variables as general continuous functions and a completely
new set of equations for dynamic analysis are derived based on this more general

model. The original method was developed for Moody'’s friction model. In the current
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work, a unified solution procedure that is valid for both Moody’s and Hirs’ models is
developed.

Nguyen (1988) developed the original method for liquid seals with constant prop-
erties and gas seals. Since the main interest of the current work is analysis of liquid
seals for cryogenic turbopumps, the improved method will be extended to include
variable fluid properties and thermal effects.

Dynamic analysis based on the above improved method is developed for three

different models.
1. Constant fluid properties.
2. Variable fluid properties
3. Thermal effects (energy equation) with variable fluid properties.

Arbitrarily varying seal profiles in both axial and circumferential directions are
considered. The arbitrary seal profile may be either due to distortion as discussed
earlier, or by design itself to enhance some optimum performance characteristics of
the seal. An example case of an arbitrary profile, an elliptical seal with varying
degrees of axial curvature, is analyzed in detail. An example film thickness analysis
for this elliptical seal is presented.

A case study based on predicted clearances (6 axial planes, 68 clearances /plane)
of an interstage seal of the SSME-ATD-HPOTP is presented. This predicted profile
is obtained from a thermo-elastic finite element model of the entire turbopump. The
results of distorted seal analysis are compared with those of a similar seal with average
inlet and exit clearances.

Typically, seal coefficients ‘are computed in & minimum film thickness coordi-

nate system as a function of eccentricity ratio and then transformed into the user
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defined coordinate system for actual application. Such a procedure is not valid for
an arbitrary profile seal with a non-uniform cross section. This important feature of
directional dependence of dynamic coefficients for arbitrary profile seals is illustrated
with reference to an elliptical seal. A method for computing these coefficients directly
in the rotor coordinate system is presented. Dynamic coefficients based on external
specified load are introduced for seals for the first time to analyze seals that support
a pre-load.

A number of cases from literature, both experimental and theoretical, are studied
with reference to the analysis developed. In particular, results of current work are
compared with the theoretical work of the following: Nelson and Nguyen (1988a,1988b),
Childs and Kim (1985), Childs and Lindsey (1993), Sharrer and Nelson (1990), Schar-
rer and Nunez (1989), and San Andres (1991,1992). In addition, theoretical predic-
tions from current work are compared with a number of experimental results.

The other objective of this work is to study the effect of large rotor displacements
of SSME-ATD-HPOTP on the dynamics of an annular seal and the resulting transient
motion. Currently, the kinear model of the annular seal employed at NASA Marshall
Space Flight Center (MSFC) to estimate the seal forces during a transient motion of
the turbopump rotor uses a set of 6 dynamic coefficients computed at zero (e =0)
eccentricity. This model, while valid for a small motion of the rotor about the centered
position, may not be accurate for large off-center operation of the seal. One of the
objectives of this study is to identify the magnitude of these deviations and establish
limits of effectiveness of using such a model. This task is accomplished by solving
the bulk flow model seal governing equations directly for transient seal forces for any
given type of motion, including motion with large eccentricities.

This approach of solving governing equations directly for transient seal forces

while being the most accurate, may not be practical for routine rotordynamic sim-
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ulations. In fact, this is the primary reason for developing and studying approxi-
mate linear models aﬁd their widespread use in vibration-response and rotordynamic
simulation studies. As an alternative, an innovative method is developed to model
non-linearities in an annular seal based on dynamic coeficients computed at various
static eccentricities in the seal clearance. This method, thoroughly tested for various
types of transient motion, provides an accurate and computationally efficient means
to model the effects of eccentric seal operation on the dynamics of the rotor system.
The results from this new method compare well with bulk flow model results.
Typically, the dynamic coefficients are computed from the first order solution
which is directly dependent on the zeroth order solution. Even though the choth or-
der equations and associated boundary conditions are essentially the same for different
analyses based on bulk flow model, for example Childs (1985), Nelson and Nguyen
(1988a,b), San Andres (1991), and current analysis, there appears to be variations in
how zeroth order and first order equations are formulated and solved. In the pub-
lished literature on seals, it is assumed that the dynamic coefficients extracted from
the first order solution automatically approximates accurately the dynamic behavior
of the original governing equations for a small motion of the rotor. Two possible
sources that may be cited for a discrepancy between these two approaches are, a)
inaccurate formulation of the problem, b) error in implementation. In the present
work, based on the transient analysis developed with original governing equations
(no first order solution involved), an equivalence will be established, for the first time
for seals, between the linearized coeflicients based seal forces i.e., computing seal
forces using coefficients in the linearized force-motion model of Eq. 1.2 versus the
same forces as predicted by the original governing equations. If such an equivalence
can be established, it proves that the dynamic coefficients being extracted from the

dynamic analysis are indeed the correct coefficients which in turn validate the zeroth
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and first order solutions. In other words, it is a check case for the entire analysis.

1.4 Original Contributions

The original contributions of the current research are summarized below.

1. Develop a dynamic analysis for arbitrary profile liquid annular seals based on an
approach first proposed by Nelson and Nguyen (1988a, 1988b). The following
modifications are incorporated into this analysis.

(a) Improved zeroth order solution.

(b) Improved first order solution.

2. Dynamic analysis for eccentric seals is developed for three different models based

on the above method.

(a) Constant fluid properties.

(b) Variable fluid properties.

(c) Thermal effects (energy equation) with variable ﬂﬁjd properties (concentric
case).

3. A unified solution procedure is presented for the following two friction models.
(a) Moody’s Model
(b) Hirs’ Model

4. Dynamic coefficients for seals based on external load specification.

5. Application of the new method to study the static and dynamic characteristics

of an arbitrary profile seal, e.g., an elliptical seal with a varying axial curvature.
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. Study of directional dependence of dynamic coefficients for arbitrary profile
seals. .

- Dynamic analysis of a general distorted interstage seal of SSME-ATD-HPOTP

turbopump.
- Transient analysis with an annular seal for large eccentric motion of the rotor.

(a) Transient analysis with bulk flow governing equations.

(b) Comparison of bulk flow model simulations with linear model (dynamic

coefficients computed at concentric position) results.

(c) Study of equivalence between rotordynamic coefficients based transient
motion and the same motion as predicted by the original governing equa-

tions.

(d) A new method to model non-linearities in an annular seal for transient

analysis.

(¢) Thorough testing of the new method for various types of transient motion

and comparison with bulk flow model.
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CHAPTER II

CONSTANT PROPERTIES MODEL
2.1 Bulk Flow Governing Equations

The bulk flow governing equations of turbulent fluid flow in an annular seal have
been derived using several approaches. The following analysis is based on the work
of Nelson (1984).

The primary variables of the bulk flow are the axial velocity u(z,q), circumfer-
ential velocity v(z,q) and pressuré p(z,q). The variation of these primary variables
across the thin film is neglected. The axial and circumferential coordinates are z and
g respectively. The radius of the rotor is R and the rotor angular velocity is w rad/s.

The differential fluid volumes used to derive the bulk flow governing equations
are shown in Figures 2.1-2.2. Mass conservation of fluid in the differential volume of

Figure 2.1 yields,

v 6h Ou 6h Oh
p(v+a—qdq)(h+6—qdq)dz ~ phvdz + p(u+a—zdz)(h+5;dz)dq - puhdq-}-p???dqu =0

(2.1)

or,

6h Ou 8h Ov Gh
"E+h5§+”}9_q+ha_q+§—o (2.2)

Conservation of momentum in the axial direction for the fluid in the differential

volume of Figure 2.2 may be expressed as,

Du Op 6h O6h
(phdzdg) > = (—7i.~7,.)dzdq + phdg — (p+ 529 ) (At 5—-dz)dg + p5,92dq (23)

where The terms 7,,,7,, are rotor and stator surface shear stresses in the axial di-

rection. % is the total or material derivative of the axial velocity u and is defined
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Du _ ,0u Ou Ou

Simplifying the above expression yields,
o) Ou u Ou, 1
-5 = Ao +ug; +v5,) + 5l + ) (2.5)

Similarly, conservation of momentum in the circumferential direction js expressed as,

Dv %) oh
(phdqu)D—t = (~Tw —7og)dzdg + (p+ a—qu)(h+6—qdq)dz — phdz  (2.6)

where 7., 7,, are the rotor and stator surface shear stresses and 1’3—1’ is the total deriva--

tive of circumferential velocity v defined as,

Dv _ Ov Ov Ov

i = (a-é—ua—z va—q) (2.7
or,
Op Ov v v 1
= Bg = P(E+U5+va—q) 1 (T + 70 (2.8)

The shear stresses at the wall based on Moody friction factor are given by,

(Tt ) = pfaVAETV 4 pf, (v > Y S (oo wR  (2.9)
~(ret) = pfisvaTrer 4 pfes\/ur+ (v - wp (2.10)
where,
P density of fluid
w rotor rpm in rad/s
w wR, rotor surface velocity
f. stator friction factor

I rotor friction factor



g=R8
P

z

v Oh
(v+ 8—q)(h+ B_q) dz

dq
h
hvd
;—hdqu
% 4z) dg

Ou 8
(uw+ 8_zdz)(h + de

Figure 2.1 Differential Volume for Deriving the Continuity Equation

pdzdg b ph dg
\ 8:
8_h
Oz
ph dz

9p Oh
(P+8—qdq)(h+adq
. / 2

ép 8h
p+ Bs dz)(h + 3 dz)dg

Figure 2.2 Differential Volume for Deriving the Momentum Equations
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Using the transformation for the circumferential coordinate g = RS, in the
Eqs. (2.2,2.5,2.8) yield the following bulk flow continuity, axial momentum and cjr-
cumferential momentum equations for an incompressible fluid.

Continuity:

+ — =0 (2.11)

Azial Momentum:

h8p Ou v Ou Ou
Tpe: - MEm T Res t vE)

LRI T

Circumferential Momentum:

h 8p Ov v v v
“oRog - Mz ot Eos t 30
Hhgvead 4 2D TR e

2.2 Friction Factors

Two friction models extensively used in seal analysis are the Moody’s model and
the Hirs’ model. These two models differ in the way the roughness of the surface,
both stator and rotor, are modeled. Of these two models, use of Moody’s model
is more prevalent because of & more realistic friction factor which is dependent on
local Reynolds number, film thickness and surface roughness compared to the Hirs’
model where the coefficients are for a fixed clearance and an average Reynolds num-
ber. However, considerable experimental and theoretical data exists for Hirs’ model
based analysis, for example Childs (1985), Sharrer and Nelson (1990) etc., making it

attractive for comparative studies for any new analysis such as the current work.



Moody’s Model:
fe
fr
R,
R,
where,
e, stator pocket
e, rotor pocket

h film thickness

0.0055 € 1

) 1 4> 1 (] 1/3
1 {10+(0-—h + O_R.) }
0.0055

4
2ph

4 & 6l \i/s
{1.0 + (10 7 + IOR') }

u2+v2

2ph u? 4 (v - w)?

Ce nominal radial clearance

R, stator Reynold’s number

R, rotor Reynold’s number

Hirs’ Model:

where n,, m,, n, and m, are Hirs’ constants for stator and rotor respectively.

stator relative roughness

rotor relative roughness

fi = n, R
fr = n,R:"'
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(2.14)
(2.15)
(2.16)

(2.17)

(2.18)

(2.19)
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2.3 Film Thickness

The expression for film thickness h(z,8) as a function of eccentricity is derived in
the rotor (fixed) coordinate system, instead of a minimum film thickness coordinate
system normally used in straight or tapered seal analysis. In a typical analysis with
these seals, the minimum film thickness coordinate system is usually aligned with
the X-axis of the rotor coordinate system and for eccentric operation, the dynamic
coefficients are compufed as a function of eccentricity along this axis. Although the
dynamic coefficients can be rotationally transformed once they are evaluated at a
given equilibrium position, the minimum film thickness system cannot be used with
a seal that has a circumferentially varying clearance (which destroys axisymmetry).
This same restriction applies to, for instance, modeling pressure dam bearings versus
plain journal bearings. As a result of this asymmetry, the dynamic coefficients have
to be computed directly in the rotor coordinate system for non-uniform profiles or if
8 minimum film thickness system is used, the orientation needs to be specified. This
important feature of the directional dependence of dynamic coefficients for arbitrary
profile seals will be further discussed with reference to an elliptical seal in Chapter V.

The seal geometry is, in general, defined by its clearance function c(z,8). The
clearance function of a seal defines the fluid film thickness when the rotor is at the
centered or concentric position with respect to the seal. A constant c specifies a
straight seal, a linear function in z defines a tapered seal and so on. For the purpose
of this study, any profile other than a straight or a tapered profile is considered as
an arbitrary profile. The film thickness, which varies with eccentricity, is derived as
a function of c(z,ﬂ) and the eccentricity vector (e,8). The angle ¢, defined as the
eccentricity angle, is the angle made by the eccentricity vector with respect to the

fixed X-axis. The magnitude of the eccentricity vector is given by the eccentricity,
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film thickness, b

¢: clearance function
0-0": eccentricity

\ B

rotor

Figure 2.3 Diagram for Deriving General Seal Clearance Expression

e. The expression for the film thickness is given below with reference to Figure 2.3.
In this figure, e., e, are the offsets of the center of the rotor O’ with respect to the
center of the seal denoted by O. In this figure, ¢ is the eccentricity angle and S is
the angular coordinate.

By the law of cosines,

(R+h)* = € + (R+c)2—2e(R+c)cos(ﬂ—¢) (2.20)
or,
h(z,8) = yJer + (R+c)* — 2¢(R + c)cos(B -¢) - R (2.21)
substituting,
ecos(B—¢) = e.cosf + eysinf (2.22)
€ = ecosd (2.23)
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ey, = esing (2.24)

Eq. (2.21) may be rewritten as,

h(z,8) = \/(R +¢)? — (e28inf — e co80)? — (eqcos + eysinf) — R (2.25)

and its gradients in 8 and z directions are,

O (R+ c)g—; — (eesinf — eycosf)(e.cosf + eysinf)
B \/(R + ¢)? ~ (e.8inf — e,c083)?

+ (eesinf — e, cosf3) (2.26)
O _ (B +c)5; (2.27)
0z \/(R +¢)? — (ecsinf — eycos)?

Besides specifying the film thickness in a fixed coordinate system, the above
expression for film thickness has the following advantages over the more commonly

used approximate form,
h(z,8) = c(z) — eqcos8 — eysinf (2.28)

1. It models the curvature of the film thickness accurately. This is important,
particularly, when analyzing a severely distorted seal or an arbitrary profile seal

with a clearance function varying in the circumferential direction, such as an

elliptical seal.

2. It specifies the film thickness in a fixed coordinate system which is essential
for analyzing non-uniform profile seals as explained earlier. (examples to be
discussed later).

3. The general expression in Eq. (2.25) is more accurate, mathematically, partic-

ularly at higher eccentricities than the approximate form in Eq. (2.28).
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2.4 Solution Procedure

The general steps involved in the solution procedure are outlined in the flow chart

(Nguyen, 1988) shown in Figure 2.4. These various steps are summarized below.

Pt

Derive the bulk flow governing equations.

. Perform perturbations on the original governing equations to yield zeroth order

and first order governing equations.

. Form the appropriate boundary conditions at the inlet and the exit.

Solve the set of zeroth order equations subject to the boundary conditions at
inlet and exit to obtain the zeroth order (steady state) solution of the primary
variables, ug, vg, po.

(a) Compute leakage.

(b) Compute steady state reactive seal forces.

(c) Compute frictional torque.

. Perturb the zeroth order boundary conditions to obtain the first order boundary

conditions.

Assume a harmonic solution form and use a separation of variables procedure

to reduce the first order equations to a set of ordinary differential equations.

Solve for the first order variables, u;, vy, p;, subject to the first order boundary

conditions.

- Extract dynamic coefficients from the first order pressure field.
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2.5 Perturbation Analysis

In this section, the zeroth order and first order equations are derived using a per-
turbation analysis. The original bulk flow governing equations are perturbed about
their steady state values to yield the zeroth order and first order governing equations.
The zeroth order equations are also known as the steady state equations and they
may also be obtained from the original governing equations by dropping the time
dependent terms. The perturbed or first order equations of the governing equations
Eqgs. (2.11-2.13) are derived for a small motion of the rotor about a steady state
eccentric position.

The assumed form for the dependent variables and film thickness for perturbation

analysis are given as,

wz,8,t) = ue(z,8) + eu(z,B,1) (2.29)
v(2,8,t) = w(z,8) + evy(z,8,1) (2.30)
P(z,8,t) = po(z,8) + epi(z,8,t) (2.31)
h(z,8,t) = ho(z,8) + ehi(z,8,t) (2.32)

where ¢ is a small perturbation and u,, o, Po, ho are the zeroth order variables and
Uy, V1, Py, hy are the corresponding first order variables. Substitution of these expres-
sions into Eqs.(2.11-2.13) and neglecting second and higher order terms yields sets

of zeroth order and first order equations of the form,

(zeroth order equations) + e(first order equations) = 0
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2.5.1 Zeroth Order Equations

The zeroth order equations are essentially steady state equations and they may also
be obtained by canceling out the time dependent terms in the original governing
equations. The subscript 0 in the following zeroth order equations refer to zeroth

order variables.
a(ho‘uo) + ia(hovo)

ho Opo _ v Oug Oug
Y ho B3 + uog}
oVl 4 SRR e (230
hO apo _ Vo a‘Uo 3vo
“wRop = Mlggg t wg)

v —
+ f.o%\/ug +v¢ + f,o( = 2 w) \/u%; +(vo—w)?  (2.35)

where the friction factors f,o and fs0 are the friction factors.
The set of equations in Eqgs. (2.33-2.35) are the zeroth order equations for a

constant fluid properties model or an incompressible fluid.

2.5.2 First Order Equations

The first order equations are given by,

Continuity:
h%+ﬁ%+%u+l%v —_?ﬁ_ %_Ea_ho
°6: " Rop T "t R = “%: T RO

(@ + 1‘9")h1 (2.36)
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Azial Momentum:

3110 ho apo hovo 611.0 Buo _
houoa—z + 0 Bz T% + ho?’t— + Awuy + Ayvy = Anhy (2.37)
Circumferential Momentum:
Bvo hovo 61)0 ho 8po 8vo _
houo-a-; + R % + po_Rﬁ + how + Byu; + B,v; = Bih, (2.38)

where the coefficients A, A,, Ay, B, B, and B}, are functions of steady state vari-
ables uo, vo, po and their axial and circumferential gradients and friction factors and
their derivative terms. These coefficients for constant properties model are given in
Appendix A.

It can be seen that the first order continuity and momentum equations do not
change between the Moody’s and Hirs’ friction models and the friction factor model
only affects the definition of the coefficients Ay, A, --- etc.. These coeflicients are
derived in such a form such that the solution procedure is valid for any general friction
model. Specific analyses for two particular models, a) Moody’s model b) Hirs’ model

are developed based on this general format.

2.5.3 Linearization of Friction Factors

The friction factors f, and f,, for constant fluid properties, are implicit functions of u,
v and k. The perturbation in the friction factor is obtained by a linearization process
using Taylor’s series expansion about the operating point. The following example
analysis illustrates the steps involved in the linearization of friction factor f,. Using

Taylor’s series expansion of f, about the steady state variables, uo, vy and py,

fs

fc(u’vvh) = flol("o."o'ho) + EI(W-PD)(‘“—“O)

of, of,
+ 6—{)|(uo.po)(v - 1’0) + a_);l(vo.vo)(h — ho) (2'39)
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or,
_ 1, 8f, 81,
fo = fuo + e U + By U1 + :’TEhl (2.40)

The expressions, %fj,g-‘, %{-‘l are derived for both Moody and Hirs friction factor

models and are given in the Appendix D.

%ﬁ: - _gmﬁ (2.41)
‘Z‘ = —g.oug—:—"vg_ (2.42)
% - -’;_': (2.43)
where, |
go = _ho.m)ls;: 10ﬂ(m‘i— + 10‘*%)-"/3 (2.44)
hao 0'2255 (10‘;;; + 10"%)1/3 (2.45)
Ruo Ly (2.46)

Ho
For the case of a fluid with variable properties, there will be two additional terms,
8/, 84

8o 8u°
2.6 Zeroth Order Boundary Conditions

The boundary conditions for the zeroth order or steady state equations are illustrated
in Figure 2.5-2.6.

The fluid flow in an annular seal occurs from the high pressure side (inlet) to the
low pressure side (exit) as shown in Figure 2.5. Just prior to the inlet (2 = 0), the
fluid has zero axial velocity and the fluid pressure is given by the supply pressure or
Teservoir pressure p;. At the entrance of the seal a swirl is induced in the fluid by the

eye of the impeller creating the tangential velocity of the fluid as shown in Figure 2.4.
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Figure 2.5 Boundary Conditions
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Figure 2.6 Zeroth Order Boundary Conditions
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Generally, the magnitude of this tangential velocity is estimated as a percentage of
the rotor surface speed and is specified by the pre-swirl ratio as, vy = psr(wR), where
R is the radius of the rotor, w is the angular velocity in rad/s and psr is the pre-swirl
ratio.

At the inlet, as the fluid enters the seal there js a loss in pressure with a corre-
sponding increase in the acceleration of axial velocity, u. The relationship between

these two variables is given by the Bernoulli’s equation as,

P~ po(0.8) = 3poudy(0,8)(1+ 6) (247)

where, §; is the inlet loss coefficient and Po1, Uq refer to the pressure and axial felocity
right after inlet as shown in F igure 2.6.

The inlet or entrance loss factor, in general, is a function of geometry at the
entrance as well as local Reynold’s number (Nguyen, 1988). In the present work,
as is the norm in seal literature, a constant value is assumed for this coefficient.
In practice, one of the methods used to estimate the pre-swirl ratio and the inlet
loss coefficient is by matching the theoretical flow rate with experimentally measured
data. At present, there is no reliable way of predicting these two parameters and
the empirical procedure used above typically gives rise to different sets of input data
depending upon the seal analyst’s objectives. |

Right after the exit (z = L), the pressure is given by the low pressure, p.. At

the exit, a similar relation as given in Eq. (2.47) is used to relate the variables.

Pa(0,6) = b = Zpouds(0,6)(1~ &) (2.48)

where, £, is the exit pressure recovery coefficient. Typical values for a worn and new
seal are 0.7 and 0.85. In this analysis, the value of £, = 1.0 is used, i.e, there is

complete recovery of pressure.



31

The following is a summary of the boundary conditions for the zeroth order
equations.
At the inlet:
azial velocity, ug:

prior to inlet:

u9(0,8) = 0 (2.49)
right after inlet:
u0(0,8) = uo(0,8) (2.50)
circumferential velocity, v, |
9(0,8) = psr x wR (2.51)
pressure, po:
prior to inlet:
Po(0,8) = pi (2.52)
right after inlet:
2o(0,8) = pu:(0,0) (2.53)

The pressures p;, P01(0, 8) and axial velocity u01(0,8) at the inlet are related by,

P~ Pu(0.8) = 2o}y (0,6)(1+ ) (2.54)

At the exit, the exit pressure recovery coefficient is assumed to be 1, ie.,

P(0,8) — p = Ll (0,8)(1-1) (2.55)

or,

Po2(0,8) = p. (2.56)
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Let Ap be the total pressure drop across the seal.
Ap = pi —p. (2.57)
Eq. (2.54) may be rewritten as,
Pi(0,0) = Ap +p. — 2ol (0,6)(1+ 6) (2:58)

For the case of an incompressible fluid, the absolute pressure is not important

and therefore the exit pressure may be set to zero, i.e.,

pe = 0 (2.59)
Eq. (2.58) may be rewritten as,
Pa(0,8) = Ap = Spud(0,6)(1+6) (2.60)
or
wi(0,8) = [ (ap - pu(0,6) (2.61)

At the outset, Po1(0,3) is unknown and must be solved iteratively by requiring

that the pressure distribution at the seal exit satisfies the following condition.
Poz = 0 (262)

subject to the constraints of Eqs. (2.51) and (2.54).

2.7 Solution Procedure for Zeroth Order Equations

The solution for zeroth order equations involves the direct integration of three coupled
nonlinear partial differential equations subject to the boundary conditions given in the

previous section. The current analysis uses a zeroth order solution procedure different
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from the original method. The following is a brief comparison between Nelson and
Nguyen's original approach and the one used jn current work.
2.7.1 Comparison with Nelson and Nguyen Approach

The three steady state equations are arranged in the following fashion and integrated

from inlet to the exit.

%‘_:n Fu(uostaPO,%%7 %‘g’%)
%vf' = F (uO, vaPO, 88 1 %a %}) (263)
%% FP(uOstaPm 537%9%)

The functions F,, F,, Fy, for a constant properties model, are given in Appendix

The original analysis of Nguyen (1988) proposed a method by which the coupled
partial differential equations are reduced to coupled ordinary differential equations by
approximating the circumferential gradients of the variables ug, v, and Po as shown in
Eq. (2.63). At each axial step in the iterative procedure, the gradients with respect
to 3 are computed based on the values of the variables at the previous step. An
approximation scheme based on Fast Fourier Transforms (FFT) was used for this
purpose. Assuming that velocity and pressure distributions are known at an axial
step, the gradients of these variables, %‘gl, %‘g, %%Q, may be computed by specifying

each of the known values as a finite-length complex Fourier series as given below.

uo(z,8) = Real{uy + 2 lj:lu,,(z)e‘"ﬂ} (2.64)
vo(2,8) = Real{vy + 2 fl_lvn(z)e*"‘e} (2.65)
Po(:8) = Real{py + 2 n; Pa(2)e™} (2.66)

where N is equal to one half the number of circumferential divisions. The above
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expressions may then be used to compute the gradients as,

5Loa(;,_ﬂ) = Real{2 u:l inu,(z)e™} (2.67)

2”1;;’—‘3) = Real{2 "::linvn(z)e‘"'a} (2.68)
BPO(ZHB)
S

This methods suffers from the following drawbacks.

= Real{2 /::1-1 inp,(z)e™®} (2.69)

1. It requires too many functions for accurate solution at high eccentricites (San

Andres, 1991).
2. Computation of trigonometric functions is a very CPU intensive procedure.

3. Convergence probems (Nguyen, 1988), possibly due to truncation error intro-

duced by not including enough functions in the approximation scheme.
4. No reliable way to decide on the number of functions to be used.

In the present analysis, a simpler method based on cubic splines is implemented.
This method is more accurate as no truncation error is involved as in the FFT method.
Also, convergence at higher eccentricities is achieved with relatively fewer iterations
than the FFT method. It is also computationally more efficient as it does not involve
the computation of CPU intensive trigonometric functions. Also, the number of
circumferential grid points may be varied, upto a limit, with out affecting the accuracy

of the solution.

2.7.2 Iterative Solution for Zeroth Order Equations

Typically, an iterative procedure is used to solve for the pressure distribution. F ig-

ures 2.7-2.8 illustrate typical subdivisions in the axial and circumferential directions



35

for spline interpolation and numerical integration. The circumference is divided into
segments of equal length both in the axial and the circumferential directions.

Let m be the number of axial grid points, while 7 is the number of circumferential
grid points. Let the superscript j indicate a function evaluated at § = ;. The coupled
partial differential equations are reduced to a set of coupled ODE’s, by moving all
B-dependent terms to the right-hand side as shown in Eq. (2.63). At any given axial
pl;i.ne, cubic splines are used to fit u((,j), v‘(,j ) and pl(,j) to compute the gradients %“Bﬂ(j),
%"‘}(j) and %%U) where j = 1,2,.-.,n the number of circumferential grid points. at
that axial plane.

The set of differential equations in Eq. (2.63) are solved using separation of vari-
ables type assumption that at any fized axial location, the gradients of the dependent
variables uq, vg, pp are obtained by spline fitting these variables at that axial location
as a function of the circumferential coordinate S.

Let © represent a cubic spline function operator which when applied to a set of
function values yields a continuous Piecewise cubic spline approximation in B of that
function. In other words, given a set of grid values for 8 = B1, B2, -+, Bn at any axial

location z = z,

uo(Zk,ﬂ) = @(ﬂ’u(()j)), Jj= 1, 2, ttey M (270)
vo(zk,8) = O(B,vf)), 5=1,2, ..., n (2.71)
Po(zk,ﬂ) = @(ﬂ,p(()j)), i=12, rty M (2'72)
The circumferential gradients, %, %, gﬁ are evaluated as,
Buo ) 80(8, 1y
a_ﬁ" = ‘(aﬂ 2 )|,,=ﬁj (2.73)
G ¥) 60(B, v§)

% - 6ﬂ |ﬁ=ﬁ:’ (2.74)
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9po " 80(8, pt")
ut 2.} = Y 2.
The set of ODE’s are solved subject to the boundary conditions
At the inlet, (z = 0),
circumferential velocity,
v(0,8;) = psr x (wR), j=1,2 . n (2.76)
pressure,
(4) _ 2 (4) 2
0.6;) = {—=——=(8p-p{(0,8;)}%,5 =1, 2, -.-, 2.77
WO8) = (s (ap - 0,815 (2.77)
At the exit, (z = z,),
pgj)(oaﬂj) = 0, j=1, 2, ‘tty M (278)

In the parlance of numerical analysis, the above problem is classified as a “ two
point boundary value problem™, since the known boundary conditions exist at both
ends of the boundary. In this study, this problem is solved using a multi-dimensional
Newton-Raphson method known as “shooting method”. Nguyen (1988) reported
using a similar method based on numerically computed gradients.

The problem may be specified in the following terms. It requires to find the n
unknown inlet pressures, p((,l)(zl), p((,z)(zl), “ee p((,")(zl) subject to the condition that

(n)

the n outlet pressures pl(,l)(zm), pt(,z)(zm), ***y P (2m) are forced to be zero.
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This may expressed as,

P8 2m, 8(21), 82 (1), -+, B (1)} 0
o 2ot (a1), 7 21), (0} | _ ] 0| (2.79)
BRGNS L CVNEEN. LA I

It may be noted that even though‘both u((,j) and v((,j ) are unknown at the inlet,
there are only n unknowns at z; due to the relationship given in Eq. (2.77).

The two point boundary value problem is now reduced to finding the n roots
of the above equation. The numerical integration of the preceding differential equa;
tions may be considered as only a means of evaluating the functions p‘(,j)(z,,,) for any
given set of guesses for the roots p,(,j)(zl), p((,z)(zl), ceny pé")(zl). As mentioned earlier,
shooting method is an application of a multidimensional Newton-Raphson method
for iterative search of roots pc(,l) (z1), p(()z) (z1)y -4y p&“)(zl) combined with a numerical
integration based on evaluation of the exit pressures p}’ (zm)

Dropping the subscript 0, let pi’. )(zl) represent the k-th guess for the set of inlet
pressures p((,j )(zl) that satisfy the boundary condition of pgj)(z,,,) = 0 at the exit. vLet

the next guess be given by

(=) = P (=) + Ap(z) (2.80)
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where pi’ll)( z1) is the new guess. This may be expressed mathematically

[ .1 ) ( (1)
bu 1 1) &
5 F:}(u(() ),'U((, )1—;'05—)
av(‘) 1 1 Bv(l) Op(l)
v Fvl(ut(l ),v(() )a_anp-v_o%r)
(1) D (1) ul® st
%‘1— Fpl(ut())sv(())v_anpfy_aff
oul 8ol
TR Fluf), o, )
) . _ J Fl(ug »Yo. ' 38 Bp (2.81)
L Pl o) 02 o
8z P 0 +Y0 88 ' 88
au(") " n 8”(“)
- Fr(uf, i, %)
a,u(") ” av(“) (n)
8z Fv (ugn)’ v(()ﬂ)’ 88 BZB'
BP(") n n) 8 (n) 8‘,(")
. 8z J | F:(ut() )’v(() ), ;p ' "B8 J
[ & k k] [ (1) ‘ (o
ay ap - oay, Ap; ' (z) Pi (2zm)
k k k (2) (2)
a; a az, Apy(z) Py ' (2m)
21 22 2 4 h. f - _ J k f (2.82)
ok ok, ... ok A (")( ) (")( )
| nl n2 nn J [ Dr (21 J { Pr '(Zm J
0p5 (2m)
= ) |5 2) (2.83)
Opg’ (21) P

The partial derivatives are computed numerically usiné a finite difference formula,

895 (2m) ~ 1
3P((JJ)(21) AP(()J)(ZI)
2,88 (21), -, (2) + AP (21), - - - o (1)}

- p(()‘.){zm,P((JI)(zl)a te 7p(()j)(zl)s Tt ,P(()n)(zl)}]

i=1,2-,n i=1,2 ... n (2.84)

It requires one complete numerical integration of the Eq. (2.81) to compute
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p,(,j )(z,,,) in Eq. (2.82) and an additional n integrations of Eq. (2.81) to obtain the

derivatives in Eq. (2.83). These integrations may be performed by any standard
integrators. Nguyen (1988) used the simple Euler’s method for the above numerical

integration. For this study, the following are used.
1. 45th order Runge-Kutta-Fehlberg Method.
2. Predictor-Corrector Method.

3. Adams’ Method.

2.7.3  Cubic Spline Interpolation

Cubic splines are widely used in interpolation and surface fitting and a brief to intro-
duction to splines is given in this section.

Let the dependent variable pressure p, along the circumference of the seal at a

given axial location z = z,, be specified by p(z,.,5;) = P(Bj),forj=1,2, --., n
corresponding to 8 = ;, fB,, --- s Bn, where n is the number of circumferential grid -
points.

In a given interval (B5+B5+1), the dependent variable P(B) is interpolated using

a cubic polynomial function of the fo@ given below.
P(B) = P; + b(8-85) + c;(B-8;)* + d;(8—-5,)°, Bi < B < Bi+1 (2.85)

The above equation may be rewritten in a more general form to facilitate the
computation of the linear coefficients bjy ¢;y dj. These coefficients are determined
such that the above cubic Polynomial is reduced to a cubic spline function, i.e., the

function P(8) and its derivative P'(B) are continuous in (BjsB+1). In the following
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equation “ refers to the second derivative of the dependent variable.

P(B) = AP; + BP;,, + CP; + DP},, (2.86)
where,
= M 2.87
4 Bi+1 — B; (2.87)
B o= Bi+1 — B; (2:88)
C = (A~ A)Br-py) (289)
D = B-B)(f-f) (2:90)

The above formulation has the following important features.

1. The function P(B) is continuous at B; and B4, i.., at B; in the interval
(Bj-1,B;) and at B4, in the interval (8}, ;1)

2. The function P(B) has a continuous derivative at B; and B;4,, similar to the

above condition.

3. The above two conditions give rise to four constraints which are used to deter-

mine four adjustable linear coefficients in terms of P, P;,, P;', P;'H.

4. Also, four is the number of parameters required to define a cubic polynomial in

general.

The first and second derivative of the interpolating function is given by,

3p P; - F; 3A2 -1 n
3B? -1 "
+ —G—'(ﬂjﬂ - B;)P;y, (2.91)
az " n
?9?1: = AP} + BP}, (2.92)
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By imposing the condition of continuity in first derivative at node points, the

following equation is obtained for 7J=2,3 -, n-1.
Bi = Bi—1 o Bi+s = Bim1 pu | Biyr — Bi Py - P Pi— P,
= _S=lpt o P+ 2 ‘P, = 2 R 2.93
6 =1 3 ’ 6 7t Bis1=B;  B5— Bi-1 ( )

This is a system of n — 2 simultaneous linear equations involving n unknowns,
P;', J=1, 2, -+, n. Two additional conditions are required to uniquely define the
cubic spline. These two conditions may be provided in various ways based on the end
conditions i.e., at 8; and G,.

Let 5,(3) and s,(8) be two cubic polynomials that pass through the first and the
last four data points. The two end conditions that complete the solution are defined

by forcing these two cubics to have the same third derivative at the end points.

m

s (B) = P"(B) (2.94)
s (B.) = P"(B.) (2.95)

The Eq() may be rewritten in a more simplified form for actual computations.

AB; = Biy — B; (2.96)
a; = H (2.97)
2 _ .2
U = @)
and the end conditions,
"(B) = 6AP (2.100)

m

s"(B.) = 6AP) (2.101)
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The quantities, A",2A§2), 6A§-3) are approximations of the first, second and third

derivatives respectively.

[ —-AB AB, 0 0 0
ABy 2(AB + AB) AB, 0 : 0
0 AB, 2(A8: + ABs)  ABs : 0
0 0 ABn_z 2(ABn-2+ ABn-1) Afn,
0 0 0 AB,_y ~Afny ]
=20 R R
Py ABfA)
P, A, — A,
P/ As—- A
X J : (= J : ? b (2.102)
P,',,_l An—l - An—z
P | | —48,a0, |

The above system of equations has the following important characteristics.
1. The matrix is diagonal.
2. The matrix is symmetric.
3. The matrix is nonsingular and tridiagonal.
4. Efficient matrix reduction techniques available for solution.

The original cubic polynomial is given below along with the coefficients in terms
of Pj,Pj+1,P;l, P;;-l'

Typically, the cubic spline is written in the following form.



In the interval (8;,8;4,),

P(B) = P; + b(8-85) + c;(B-B;)* + d;(8 - B5,)°, Bi < B < Bit1 (2.103)

b = Fin-F ABH( Py, + 2P}) (2.104)
AB;
P, - P
d; = —m— 2.106
. A7 (2.106)

The sets of coefficients are stored for the n — 1 intervals and the function values

and its derivatives are computed whenever they are needed.

P(B) = & + 2¢(8-8;) + 3d;(8 - B;)>, (2.107)
P'(B) = 2¢; + 6d;(8-5;) (2.108)
ﬂ:’ < ﬂ < ﬁj+1

2.7.4 Leakage

The mass flow rate, dQ, through the differential element hoRdj shown in Figure 2.9
is given by,

dQ = uo(0,8)poho(0, B)RdS (2.109)

where,
uo(0,8) axial velocity at inlet
ho(0,8)  film thickness at inlet
R radius of the rotor
Po density of fluid
The above expression is integrated around the circumference of the seal at the
inlet to give the total mass flow rate or leakage, Q.
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Figure 2.9 Leakage
2
Q = [ u(0,B)poho(0, 5 Rds (2.110)

2.7.5 Steady State Seal Forces

The reactive seal forces acting on a non-vibrating rotor are obtained by integrating
the zeroth order pressure field, Po(z,8), around the rotor and along the length of the
seal.

The X and Y components of force acting on the differential area element RdfBdz,

shown in Figure 2.10, are given by,

—dF, = po(z,8)cosB RdBd: (2.111)
—dFy, = po(z,B)sinf RdBdz (2.112)

Integrating the above force expressions over the entire surface area of the rotor
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Figure 2.11 Force Geometry for Seal
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Figure 2.12 Frictional Torque

yields,
~F, = /0 - /o " polz, B)cosB RdBd: (2.113)

L p2x
-F, = / f po(z,8)sinB8 RdBdz (2.114)
0 0
The angle made by the resultant seal force F with the X-axis is defined as the

load angle and is given by,

_F
Y = tan'l(—F-f—') (2.115)

F2+ F? (2.116)

v

The resultant seal force is also known as the load bearing capacity of the seal.
This resultant seal force must balance against the external load (pre-load) applied
by the rotor on the seal. The pre-load may vary in magnitude and direction as the

pumps’s speed or power-level changes.

2.7.6 Friction Loss

The friction loss or horse power loss computation is illustrated in Figure 2.12.

The frictional torque on a differential element RdBdz due to friction at the rotor
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surface is given as,

d = Rr|,RdAdz (2.117)
- hop gy (v-w)
—Trly = 2 Bg + 4h {fc2Rl I 2 R.} (2.118)

where f,¢ is the rotor friction factor and Trqlrs is the shear stress at the rotor surface.

Total frictional torque, I', over the entire length of the rotor is given by,
L p2rx
r = — f / Toole R?dBdz (2.119)
o Jo
and the power loss due to friction is (dropping the negative sign),
Power Loss = Tw (2.120)

where w is the rotor rpm in rad/s.

2.8 First Order Boundary Conditions

The first order boundary conditions are obtained by perturbing the zeroth order

boundary conditions of Eqs. (2.51,2.54,2.56).

p(0,8) = —(1+ &)pouo(0, B)us (0, B) (2.121)
v(0,8) = 0 (2.122)
n(L,B) = 0 (2.123)

2.9 Solution Procedure for First Order Equations

The set of first order equations in Eqs. (2.36-2.38) are further reduced by employing a
separation of variables technique for an assumed small motion of the vibrating rotor.

The assumed form of perturbations for the dependent variables and film thickness
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elliptical whirl orbit
whirling rotor

seal

" Figure 2.13 Elliptical Whirl Orbit

U = uy + eu (2-124)
v = v + en (2.125)
P = po+ ep (2.126)
h = fzo + €eh; (2.127)

The rotor is assumed to execute a whirling motion with an elliptical orbit as
shown in Figure 2.13. The figure shows the steady state operating position of the
rotor along with the vibrating (whirling) rotor. Let the semi-major and semi-minor
axes of this perturbation ellipse be given by (X ,f’)

The perturbation ¢ may be considered to be a combination of two individual
perturbations €. and ¢,. This assumption is the basis for eccentric seal analysis

where the dependent variables vary in the circumferential direction as opposed to
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the concentric case where they remain constant in the circumferential direction. The

magnitudes of these perturbations are arbitrary since they do not form a part of the

final solution. These perturbations are assumed to be infinitesimally small and is

the basis for neglecting second and higher order terms in the perturbation analysis.

These perturbations, e, and €z, are the non-dimensionalized axes of the whirling orbit

as given below.

(73]

€V

(3 4]

Chl

X Y

= —up + Uiy
Ce .
X Y

= —Vi + —V1y
Ce .
X Y

= :Plz + _.Ply
X Y

= —h, _hly
Ce

(2.128)
(2.129) -
(2.130)

(2.131)

where ¢, is some nominal clearance used to non-dimensionlize the perturbations.

Let the perturbations be redefined in the following non-dimensionalized form.

Substituting Egs. (2.132-2.133) in Eqs. (2.128-2.131) yields,

€U,
€Yy

P
€h1

Ae, =

PI%'PIX.

Aeg, =

Acui, + Aguy,
Aevi, + Ay,
Aeepie + Agypy,
Aechye + Aeghy,

(2.132)

(2.133)

(2.134)
(2.135)
(2.136)

(2.137)

Assuming that the rotor whirls about its equilibrium position in an elliptical orbit

whose center is located at (%o, ¥0), then the positioﬁ of the center of the vibrating
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Figure 2.14 Perturbation Orbit

rotor relative to its static eccentric position is given by (Figure 2.14),

z —zp = Xcoswt (2.138)

Y-y = Ycoswt (2.139)

Let a = wt, where w is the angular velocity of the rotor given in rad/s. The

perturbed film thickness expression may be rewritten as,

h(z,8,t) = ho(2,8) ~ (z ~zo)cosf ~ (y — yo)sing (2.140)

or,

h(zsﬂst) = ho(z,ﬂ) + Ehl(zsﬁst) (2‘141)

From the above equation, the perturbation in film thickness ¢h, is given as,

¢hi(2,8,t) = ~XcosacosB — Y sinasing (2.142)
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or
hy = —%{Ae, cosa cosf + Ag, sina sinf} (2.143)
g—’; = —&{—Ae, sina sinf3 + Ag, sina cosf} (2.144)
€
a—;t—l = —-%{-—Ae, sina cosf + Ag, cosa sinf} (2.145)

The right hand size of the system of first order equations (Egs. 2.36-2.38) consists
of harmonic forcing functions Ay, 7""1, 38 M1, —83}, and %"‘1. These functions are
essentially harmonic functions from Egs. (2.143-2.145) Based on this fact, the solution

is assumed to be harmonic functions of o and g.

Pe = ay(z,B)cosa + as(z,B)sina (2.146)
u. = ay(z,8)cosa + ay(z,B)sina (2.147)
vie = ag(z,8)cosa + ag(z,B)sina | (2.148)
Py = bi(z,8)cosa + by(z,f)sina (2.149)
wy = bz,B)cosa + bi(z,f)sina (2.150)
vy = by(z,8)cosa + by(z,B)sina (2.151)

Using the above substitutions in the set of first order equations Eqs. (2.36-2.38)
yields 12 coupled linear partial differential equations. This set of equations are given
in Appendix A, for the constant properties model.

The solution procedure for the 12 linear PDE’s is exactly the same as that of
the zeroth order solution. The integration is performed with a 4-5th order Runge-
Kutta method, predictor-corrector method and Adams methods. All the methods

yield almost identical results, with the Runge-Kutta based method being the fastest.
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2.9.1 Comparison with Nelson and Nguyen’s Approach

The original analysis assumed the variables, a; and b; to be harmonic and separated

them into two auxiliary functions of the form,

ai(z,8) = fi(z)cosB + gi(z)sinf (2.152)

where f;(z) and g;(z) are assumed not to vary with 8. Nelson and Nguyen (1988a,
1988b) thereby apply a second separation of variables substitution to the first order
differential equations. While the above form of assumed solution yields results that
agree with available experimental results, an examination of the numerical values of
the functions £;(z) and g;(z) revealed a B dependence, particularly at eccentricities
above 0.5. The inclusion of the circumferential gradients of these variable should
therefore improve the solution at higher eccentricities.

The a; and &; in the current analysis are totally general functions of z and Jé]
which thereby avoids the mathematical contradiction discussed above. Furthermore,
in many cases the results of the current approach show better agreement with exper-

imental results than the earlier results.

2.9.2 Boundary Conditions of Assumed Variables

The first order boundary conditions are expressed in the assumed solution variables

are,

a1(0,8) = —(1+&)pas(0,B) (2.153)
a:(0,8) = —(14&)pas(0,8) (2.154)
as(0,8) = 0 (2.155)

as(0,8) = 0 (2.156)



b(0,8) =
be(0,8) =
b(L,B) =
b(L,B) =

2.9.3 Solution of First Order Equations

_(1 +£i)Pba(09ﬂ)
— (14 &)pba(0,8)

0

0
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(2.157)
(2.158)
(2.159)
(2.160)
(2.161)
(2.162)

(2.163)

(2.164)

The same solution procedure that is used for the zeroth order equations is used to

solve the reduced first order equations given in Appendix A subject to the boundary

conditions of Eqs. (2.153-2.164) for variables a;(z,3) and bi(z, ).

2.10 Determination of Dynamic Coefficients

In this section, dynamic coefficients are derived form first order pressure distribution

p1(z,B,t). The following linearized force-motion model for a 2-DOF vibration is

used to define the rotordynamic coefficients. In this equation, Az and Ay define the

displacement of the rotor relative to a static operating point and AF,, AF, are the

components of the perturbed force due to first order pressure field, pi(z,0,t) The

significance of each of the linearized coefficients have been explained in Chapter I.

AF, Kee  kzy
AF, —kye Ky,
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M. m, Az
+ (2.165)
My My, Ay

The perturbed or incremental force components acting on the rotor due to a
small motion about a static eccentric position (z,y) is given by integrating the first

order pressure field,

L p2xn
~-AF, = / / epycosfS RdBdz (2.166)
o Jo
L p2n
—AF, = / / ep1sinf RdBdz (2.167)
o Jo
The perturbation motion is described earljer by an elliptical orbit. The dis-

placements, velocities and accelerations at any point on this elliptical orbit are given

by,

Az = Xcoswt (2.168)
Ay = Ysinwt (2.169)
Az = —wXsinwt (2.170)
Ay = —wYcoswt - (2.171)
AZ = —w?Xcoswt (2.172)
A = —uw?Ysinwt (2.173)

At wt = 0, sinwt = 0, coswt = 1 and Ay = Az = Aj = 0. Substituting these
values in Eq.(2.165),

—Af' = Aee{-Kee —~ Moo’} + A {cow} (2.174)
-—A:; = Ae{-k: + mpRw’} + Ag{C,w} (2.175)

At wt = %, sinwt = 1, coswt = 0 and Az = Ay = AZ = 0. Substituting these values
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in Eq.(2.165),
"Acf?z = Aee{—ccz“’} + Aev{kfv - mﬂ'v""’z} (2'176)
_Af Y = Aa{a.w} + Ag{K,, — Myw?} (2.177)

From the following relationship between the first order pressure and the assumed

variables, a; and b;,

Py = Aezplz + Aeyply (2.178)

P1- and p,, may be expressed as,

Plz = aco8a + ajsina (2.179)

Py = bicosa + bysina (2.180)

Equating Eqs.(2.166-2.167 and Eqs.(2.174-2.177) and dropping the perturba-

tions, the following relations for the dynamic coefficients are obtained.

1 L p2x
f— 2 = ——
Kee = Most? = = /D /O a1cosBRAdBdz (2.181)
L p2x
Coyw = 'clf j / bicosBRdBdz (2.182)
. 0 1]
1 L p2x
— 2 [ — Y .
ke + myw c../; -/; a;sinf3RdBdz (2.183)
1 L po2= .
Oy = — /o /o bysinBRdBdz (2.184)
~Cow = = Ji - i " azcosBRABd (2.185)
ez = A a»cos z .
ke — mow? = L f - / " bacosBRABA (2.186)
= ¢ Jo Jo z )
= L [* 1" aysinBRABA 2.187
Cyaw _-Z/O -/o a:s:nf3RdBdz (2.187)

L pox
Ky — Myw? = é /o /0 bysinBRdBdz (2.188)



57

These 8 equations must be evaluated for at least two whirl frequencies to obtain
solutions for the 12 dynamic coefficients. A least squares approach is employed for this
step. Typically, 2-4 whirl frequencies are used in a least squares scheme to compute
these coefficients. Also, the dynamic coefficients for an annular seal are essentially
independent of whirl frequencies. The 2-D integration performed numerically is an
improvement over the average value approach employed by the Nelson and Nguyen
(1988a, 1988b).

2.11 Dynamic Coeflicients based on External Load Specification

Typically, for seals the dynamic coefficients are computed as a function of eccentricity.
This assumes that the eccentric position of the shaft has been specified and the
resultant reactive force due to the pressure distribution in the seal is to be determined.
In some cases, it is possible to specify the angle at which external load is supported
by the seal during the operation of the turbomachine. For example, unit 3-01, an
experimental seal under design at NASA (results to be discussed later) supports the
external load at a constant angle of 290° in the rotor coordinate system as shown in
Figure 2.15.

The problem now is to determine the eccentric position given an external load
F and its load angle ®. This is accomplished by iteratively searching for an eccentric
position e of the rotor which produces a pressure distribution po(z,S) which when
integrated over the entire seal balances the applied load in magnitude and direction.
This iterative search is carried out using a modified 2-D Newton-Raphson method
discussed below.
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Component Side Losd Resultant Static Load
:'v: (] M8 Turtine Ball Searing | Roller Bearing
Losd | Phase | Load | Phase | Losd Phase | Losd | Phase | Lasd Phase
() (deg) 0 | (deg) | WO | (deg) [ W (dog) | M) | (gog)
5% - 19 200 N 00 m 130 " s 14
0% 7 142 478 x 280 N 218 108 480 ]
100% 128 128 870 298 300 an as 114 585 100

Nete: PBI is Preburner Impelier, MS! is Main Stage Impeiler.

Table 16, Campessnt S3de Losds

LD

\
/

2
s
w
d
A}
?

t
<
A;\. ’
, -~

Figure 2.15 Example of External Load acting on a Seal
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Y
F
F: seal force
v: load angle
¥W: external load
¢: external load angle
. L 4
o [
0
e, X
rotor
w
seal

Figure 2.16 External Load and External Load Angle
2.11.1 Steady State Force Equilibrium Position

A modified 2-D Newton-Raphson method is used to locate the operating position. At
the steady state equilibrium position,

Let F, and F, be the X and Y components of the seal force obtained by inte-
grating the pressure field within the seal for a given rotor position (z,y). Let F, and

F, be the components of the external load.

fo = F + (2.189)

F
L = F 4 F, (2.190)

where f. and f, are the residual forces in X and Y directions respectively. The
problem reduces to finding (x,y) such that the residual forces f= and f, are zero. In

other words, find a rotor eccentric position such that F, is balanced by F. and F, is
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balanced F, .

The iterative search is described by,

The1 = T + Az (2.191)

Vel = Yk + Ay (2.192)

and the increments Az, and Ay, are computed from Egq. (2.193).

6F, 8L Az ,
8z by o G I (2.193)
%F,l %}}_ Ay 5y

The derivatives in Eq. (2.193) are computed using a forward difference formula as,

OF, Fe(z + Az,y) — F.(z,y)

= 194
Oz Az (2.194)
6Fz Fz(3’y+Ay) - Ff(z’y)

= 2.195
o Ay ( )
6Fy Fu(z + Azay) - Fv(z,y) 2

_ 196
Oz Az (2.196)
aFv — Fv(z’y + Ay) - Fv(z’ y) (2.197)
Oy ' Ay

The iterative search stops when the residual forces f- and f, are below some
specified tolerance. Once, the eccentric position is determined, the computation of

dynamic coefficients is carried out as before.
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CHAPTER III

VARIABLE PROPERTIES MODEL

The effect of variable fluid properties as related to liquid seals for cryogenic applica-
tions was first investigated in some detail by Simon and Frene (1989). Their initial
work did not include fluid inertia effects and the analysis was based on a simplified
Reynolds equation. San Andres (1991) developed a seal analysis that included vari-
able fluid properties as a function of local pressure and a mean temperature. He
used the NIST 12 Database, MIPROPS ( 1986) to compute the fluid properties. This
database is based on the 32-term Modified Benedict- Webb-Ruben Equation of State.
Experimental and theoretical data is used to compute the coefficients of the terms in
this equation of state and data is available for a number of fluids.

The working fluid in SSME turbopump is either liquid oxygen (LOX) or liquid
hydrogen (LH2). Figure 3.1 shows the variation of density and viscosity of LOX a
function of pressure. Typical inlet pressures for the turbopump are in the range of
20 Mpa and the exit pressures are in the 3 Mpa range.

For a typical seal, inlet and exit conditions are given below.

inlet pressure, p; 19.0 Mpa
exit pressure, p, 3.0 Mpa
mean temperature, T* 90° K

For the above conditions, the fluid properties for LOX at inlet and exit are,

at inlet:
density, p; 1179 kg/m® K

viscosity, u; 2.32x10* Pa-s



compressibility, 122|;  0.0014 1/MPa

p 6p
at exit:
density, p, 1148 kg/m® K
viscosity, u. 2.01x10"* Pa-s

compressibility, %gﬁlr 0.0019 1/MPa

For the same conditions, the fluid properties for LH2 at inlet and exit are,

at inlet:
density, p; 42.13 kg/m®* K
viscosity, u; 6.43x107° Pa-s

compressibility, if%ﬁlT 0.03335 1/MPa

al ezit:
density, p, 8.18 kg/m® K
viscosity, u. 4.13x107° Pa-s

compressibility, %g"ﬂr 0.334 1/MPa

The change in density and viscosity for LOX is relatively small (about 2.6%

and 12% respectively for the above case). However, for LH2, the change in density
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between inlet and exit is considerable and this will have a noticeable effect on the

dynamic coefficients computed (San Andres, 1991). A similar change is also noticed

in viscosity.



Densi 3]
?B M);; (kg/m3)

2,
£

- 4
° 9

?

ty *10-2(1/Mpe)
° o

°
4

®

*

Isothermal Compressibili
o o

e
>

z : o
w» > >
2 'l

Viscosity o'to-a(ProL

o
<

-

e
2

T

Al
L 18 17 2t

9 13
Pressure (MPa) Pressure (MPa)

-
- ]

17

-5(Pa-e/Mpas)
o
»

9 13 17 1 -] 9 13
Pressure (MPa) Prassure (MPs)

Change of Viscosity with Pressure *10
o o

8

Figure 3.1 Properies of Liquid Oxygen at 90°K

7




64

¥ L L
. . %

° ...-uzm:. a_.ou._».

15 1

Y
0
™~

48
]

(Sw/Dy) Aysveg

Pressure (MPa)

Pressure (MPa)

Pressure (MPa)

(sdpwe-84) esnesesd ym Kijsoosia jo eBusy) jo elmy

0.5

L L] L L]

hd ” ~ -

(-] o o (-]
(sdm/1) Apnqiesesdwod reuseyios)

<
]

&

17

13

Pressure (MPs)

Figure 3.2 Properies of Liquid Hydrogen at 90°K



65

3.1 Thermophysical Properties Model

Even though the following analysis is valid for any liquid, the two fluids of interest in
this research are the cryogenic fluids, liquid oxygen and liquid hydrogen. These are
the two working fluids commonly used in the SSME turbopump.

The standard model generally used for representing the thermophysical proper-
ties of fluids is the “Modified Benedict-Webb-Ruben (MBWR)” equation of state.
This particular model is widely used to correlate thermodynamic properéy data and
a number of computer codes are available to tabulate the properties for various fluids
based on this equation of state. The most important of these codes is NIST Standard
Reference Database 12, published by National Institute of Standards and Technology.
This code is available in source form and can be easily integrated into a seal code and
this code in its source form is used in the present work.

The main advantages of a MBWR based fluid property model] are,
1. Accurate data available for a number of fluids.
2. Easy adaptability to use in a seal code.
3. Correlation of experimental data from various sources.

4. Lends itself to analytical work.

3.2 MBWR Equation of State

The MBWR equation of state in the single phase region is a 32-term equation given

below.

p = pRT +

P(GT + G)T* + G(3) + G@)/T + G(5)/T?) +



66

P(G(6)T + G(T) + G(8)/T + G(9)/T?) +
PHG(O)T + G(11) + G(12)/T) + p*(G(13)) +
PY(G(14)/T + G(15)/T*) + p"(G(16)/T) +
PA(GUIT)/T + G(18)T?) + p°(G(19)/T?) +
P°(G(20)/T* + G(21)/T®) e +

p*(G(22)/T? + G(23)/T*) & +
P (G(24)/T? + G(25)/T%) & +
p°(G(26)/T? + G(27)/T*) ™ +
P (G(28)/T? + G(29)/T%) & +

p*(G(30)/T? +. G(31)/T® + G(32)/T*) (3.1)

where,

P pressure
I density

T absolute temperature

~ -;12-, p. density at T,
G(1),i=1,2,...32  linear coefficients

The linear coefficients G(i) are computed using experimental and analytical data
for various fluids.

The expression for viscosity is given as,

b= w(T) + m(T)e + p(p,T) (3.2)
Bo = f: G, (3)T4-/3 (3.3)

#m(T) = F(Q1) + F(2) {R@3) - In(T/F.(4))} (3.4)
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[Jz(P,T) = fleT) _ 6T (3.5)
F(p,T) = E.(1) + E,(2)H(p) + E.(3)p* +

E,(4)H(p)/T* + E,(5)0™'/T"* +

E.(6)/T + E,(T)H(p)/T (3.6)
G(T) = EJ1) + E(2)/T (3.7)
Hp) = %o — E.(8))/E.(8) (3.8)

3.3 Bulk Flow Governing Equations

The bulk flow governing equations for compressible flow are given by Nelson ‘(1985).
The original equations are derived for gas seals and the same equations will be used

for this analysis using MBWR equation of state.

Continusty:
d(phu) | 10(phv)  B8(ph) _
3z + R o8 + el 0 (3.9)
Azial Momentum:
hop Ou v Ou Gu
oo - Mt Rt e
+ f.§\/u2+v"’ + f,g\/u’-k(v—w)z (3.10)
Circumferential Momentum:
h Op v v Ov v
“eRos = Mt mep T
+ f.g\/u"’-’f-v’ + f,(v;w) u? + (v — w)? (3.11)

A comparison of the above governing equations with the case of consiant prop-
erties model (Eqs. 2.13-2.15) reveals that these governing equations are essentially

the same except for the continuity equation where the density term is retained within
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the derivative. The momentum equations are the same, but with a variable density

and viscosity.

3.4 Comparison with San Andres (1991)

San Andres (1991), presented an analysis for variable properties based on a finite
difference formulation. The solution is based on a finite difference scheme that is based
on a method of Launder and Leschziner (1978) and used a SIMPLEC algorithm of
Van Doormal and Raithby (1984). In the current work, a completely different solution
procedure will be used. The analysis developed for the constant properties case in

the previous chapter will be extended to the case of variable properties.

3.5 Perturbation Analysis

In this section, the set of governing equations, Egs. (3.9-3.11) are perturbed about
their steady state values to obtain the zeroth and first order equations. The procedure
is similar to the one outlined in Section 2.5.

The assumed form for the dependent variables, film thickness and the fiuid prop-

erties for perturbation are given as,

u(z,6,t) = ue(z,8) + eur(z,p,1) (3.12)
v(z,8,t) = vo(z,8) + evi(z,B,1) (3.13)
p(z.8:t) = po(2,8) + epi(z,B,1) (3.14)
h(z,B,t) = ho(z,8) + ehy(z,B,1) (3.15)
p(z,8,t) = po(z,8) + epi(z,B,t) (3.16)
#(z,8,8) " = po(z,8) + epr(z,8,1) (3.17)

where u, vo, po, ho, po, po are the zeroth order variables and uy, v, p1, Ry, p1y 1
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are the corresponding first order variables, and eu,, ev;, €p1, €hy, €py, €u, are the per-
turbations. The zeroth order variables, p, and pg and the corresponding first order
variables p;, u; are not independent and will be related to the primary variables u,
v, p through the MBWR equation of state. Substitution of these expressions into
Egs. (3.9-3.11) and neglecting second and higher order terms yields the sets of zeroth

order and first order equations.

(zeroth order equations) + e(first order equations) = 0

3.5.1 Zeroth Order Equations

The zeroth order equations are given by,

Continuity:

8(pohovo) + 1 8(pohovo)

3 R o8 =0 (3.18)
Azial Momentum:
ho8po vo Oug Oue
T o - Mipgs T wg)

+ fogVud + 0 + Frasi\fud + (v0 — w)? (3.19)

Circumferential Momentum:

ho 6Po

S o R W

poR 88

vo Ovg Bvg

X I
+ f.o%\/uﬁ +vi + f,o(vo+w)\/u§ + (vo —w)?  (3.20)
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3.5.2 First Order Equations

The first order equations are given below.

Continuity:

povo Ohy poho Ov, voho Op1 Ouy 9p1
bkt ho 2Pt
Rop T RoE T RaF T g, T ouhg,
. Gh, oh,
+A1,‘U-1 + A.,,'U1 + Appl = —po‘u,o-a-;- - po—aT - Ahhl (3.21)

Azial Momentum:

hovo Ou Ou, 0 du
—R—°a[; houo=~ + ho a}: ho—r + Buu + By + Bypy

+ B“p.l = thl (3.22)

Circumferential Momentum:

hovo Ov ho Op vy, Bv
;2065 + :agl + houoalho 3; + Couy + Covy + Copy
+ Cupy = Crhy (3.23)
where the coefficients A, A,, - - etc. are functions of steady state variables uo, vy,

po and their axial and circumferential gradients.

3.6 Zeroth Order Boundary Conditions

The boundary conditions are similar to the constant properties model, except for
exit pressure term which is retained for the variable properties case, since the fluid
properties vary with pressure. The boundary conditions for zeroth order equations

are shown in Figure 2.6.
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The following is a summary of the boundary conditions for the zeroth order

equations.
At the inlet:
azial velocity, uo:
prior to inlet:
u9(0,8) = 0
right after inlet:
u(0,8) = u0i(0,8)

circumferential velocity, vo:

v0(0,8) = psr x wR

pressure, py:

prior to inlet:
Po(0,8) = p;i
right after inlet:
Po(0,8) = po:(0,5)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

The pressures p;, po;(0,5) and axial velocity uo;(0,3) at the inlet are related by,

pi — pna(0,08) = %PO(O,B)'L(Z;:(U;ﬂ)(l'FEi)

At the exit, the exit pressure recovery coefficient is assumed to be 1,i.e.,

Pa(0,8) = pe = 3pol(0,B)u3(0,8)(1 - 1)

or,

P02(0’B) = Pe

(3.29)

(3.30)

(3.31)
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Eq. (3.29) may be rewritten as,

P(0,8) = pi = 2po(0,8)u3:(0,8)(1 + &) (3.32)
w(0,8) = |t~ pu(0,) (3.3

At the outset, po;(0,5) is unknown and must be solved iteratively by requiring

that the pressure distribution at the seal exit satisfies the following condition.

poz(L,B8) = p. (3.34)

subject to the constraints of Eqs. (3.26,3.29)

3.7 Reduction of Zeroth Order Equations

In the following analysis, the original zeroth order equations are reduced into a form
suitable for the solution procedure developed in Chapter II.
The fluid properties are, in general, functions of local pressure and temperature

as given below.

p = ppT) (3.35)

p = upT) (3.36)

The dependent variables, pressure p and temperature 7T are functions of the axial

and circumferential coordinates, (z,0).

r = p(z,B) (3.37)

T = T(zp) (3.38)
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or Egs. (3.35,3.36) may be rewritten as,

p = p(p(z’ﬂ)vT(z’ﬂ)) (3'39)
B = #(P(Z,ﬂ),T(Z,ﬂ)) (340)

Using chain rule for differentiation, the terms %%, %ﬁf, %%, %‘i‘l, which represent

the changes in fluid properties with respect to axial and circumferential coordinates,

are expressed (subscript 0 refers to zeroth order variables) as,

% = i, @)
% = et R (842
A~ -
= et e 40

In the following analysis, fluid properties are assumed to be a function of the

local pressure and a mean temperature, T*.

p = p(p,T" (3.45)

B = upT (3.46)

In other words, the fluid flow is treated as an isothermal flow and the fluid
properties, density and viscosity are are assumed to vary as function of local pressure,
p(z,8), only. For a constant temperature field, the partial derivatives with respect to

temperature T in Eqs. (3.41-3.44) vanish giving the following simplified expressions.

O _ O
0z Opo Oz
O _ Omdm
te )] Opo 08

(3.47)

(3.48)
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B0 _ Ouo O

5z = Bpe 0z (3-49)
m Bpo Opo

2 = -KB-re 3.50
98 35 OB (3.50)

Rate of change of density with pressure
Rate of change of viscosity with pressure

Axial pressure gradient

§ =F 3F 35

5 Circumferential pressure gradient
The term gﬁ is related to the compressibility of the fluid and is usually represented by
the dimensionless parameter, isothermal compressibility, %g—g]r. A larger isothermal
compressibility signifies a more compressible fluid.

Using these relations, the Eqs. (3.18-3.20) may be rewritten as given in Appendix
B, Egs. (B.1-B.4). For constant properties, i.e., an incompressible fluid, po,puo =
constant, or, gﬁ’- = %ﬁ.{’- =0, and the Eqs. (B.1-B.4) reduce to the Eqs. (A.1-A.4) of
the constant properties model.

As in the case of constant properties model, the reduced zeroth order equations

may be rewritten with all S-dependent terms on the right-hand side as,

%ﬂ Fu(uo,vo,m,%,%‘?:%%)
88_03 - Fu(uo’vo,po,%_uﬁn’%_iz’g, %%) (3'51)
%} Fp(anvaOa 85 1%‘?’%)

The functions F,, F,, F, for the variable properties model are given in Appendix B.

3.8 Solution Procedure for Zeroth Order Equations

The solution procedure for zeroth order solution is exactly the same as discussed in
Section 2.7. The only difference is that the fluid properties and their dependent terms

are updated at each grid point during numerical integration.
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3.9 Reduction of First Order Equations

The original first order equations given in Eqs. (3.21-3.23) are reduced similar the
zeroth order equations.

The first order variables in the first order equations, Egs.(3.21-3.23) are u;, v,,
P1, p1, ph. Out of these variables only u,, v, p, are primary variables. The remaining
two variables p,, y1; are related to p, using the property relations based on the MBWR
equation of state.

The relationship first order variables p; and p1 is given by

o= Aup (3.52)
where,
6 .
A, = 5;3 (3.53)

The above relationship is obtained by perturbing the MBWR equation of state with
respect to pressure and density and equating the terms on both sides. From a different
perspective the ratio g is a ratio of two infinitesimally small quantities, which is
nothing but the derivative gs.

In the expression for viscosity given in Egs. (3.2-3.8), the relation between pres-

sure and viscosity is not explicit. Let the first order variables 41 and p; be related

as’
1 = Bulpl (3.54)
where,
B = 2¥ (3.55)
ul = ap .

The first order variables p; and u, are then related through,

po= Aam (3.56)
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where,

An =AnB, (3.57)

The terms %s and %f are obtained by differentiating Eqs. (3.1,3.2-3.8) with re-
spect to density p and viscosity p respectively and these expressions are given in
Appendix F.

Using the relations Egs. (3.52-3.57), the first order equations are rewritten in

terms of the primary first order variables u;, v, and p;.

Continuity:
povo Oh, poho Ov, voho Op: Ou, Op, o,
—_— 4 — — ho— ho A, —
R 93 + R 0B + R 93 +Pohoaz +u°°6z + No Pl 5y
6h Oh
+Aw + A + A4p = —poto— — pome — Anhy (3.58)
Oz ot
Azial Momentum:
hovo Ou, Ou, ho 3P1 Ou,
R o8 + houoaz + -p_oaz + how + Buu; + B,v, + Bpp
= B},hl (3-59)
Circumferential Momentum:
8
Povodu 4 Bo O e 4 h2D 4 Cu + O + Com

R 48 poR 88 Oz 6t

= Chhy  (3.60)

The coefficients Ay, A,.. for a variable properties model are defined in Appendix B.
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3.10 First Order Boundary Conditions

Perturbing the zeroth order boundary conditions of Egs. (3.26,3.29,3.34) yield the
following first order boundary conditions.

At the inlet:

circumferential velocity, v,:

vl(osﬁ) =0 (3.61)

pressure, p;:
p(0,8) = —%{2po(0,ﬂ)uo(0,ﬂ)u1(0,B) - utzu(o’ﬂ)Pl(U’ﬁ)} (3'62)

At the exit:

pressure, p;:
p(0,8) = 0 (3.63)

Using the relation between p; and p;, Eq. (3.62) may be rewritten as,

1
pi(0,8) = {10501+ E«)uél(O,ﬂ)gg}{(l + §:)po(0, B)uo(0, 8)}us(0,8)  (3.64)

3.11 Solution of First Order Equations

The same procedure developed for the constant properties model is used for this case.
The set of first order equations in Egs.(3.58-3.60) are further reduced by employing
“separation of variables” technique for an assumed small motion of the vibrating
rotor.

The right hand size of the system of first order equations consists of harmonic

forcing functions A, %’;ﬁ, %'31, hy, %’g-, %’;’-. Based on this fact, the solution is assumed



to be harmonic functions of a and 8.

Pi=z

Uie

Vig

Py

ulu

vly

ai(z,B)cosa + ay(z,B)sina

a3(z,B)cosa + ayz,B)sina

as(z,8)cosa + aq(z,B)sina

bi(z,B)cosa + by(z,fB)sina

ba(z

yB)cosa + by(z,B)sina

bs(z,B)cosa + bg(z,B)sina
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(3.65)
(3.66)
(3.67)
(3.68)
(3.69)

(3.70)

Using the above substitutions in the set of first order equations Eqs. (3.58-3.60)

yields 12 coupled linear partial differential equations.

The first order boundary conditions expressed in the assumed solution variables are:

01(01 .B)

a2(0, 5)
as(0, 8)
ae(0,5)
a1(L, B)
az(L, B)
b,(0,8)

b2(0, B)
55(0, ﬂ)
be(0, 3)

(1 + &)PO(O’ 3)03(0,ﬂ)

{1+ 05(1+ £)u,(0,8) )

(1 + fi)Po(O, B)‘h(oa ﬂ)

{1+ 05(1+ £)u,(0,8) 2}

(1 + &)ro(0,8)b5(0, 8)

C{1+05(1+ &)u,(0,8) 2}

0

0

(1 + &)po(0,8)b4(0, 8)

{1+ 051+ &)u,(0,4) Z}

(3.71)

(3.72)
(3.73)
(3.74)
(3.75)
(3.76)

(3.77)

(3.78)
(3.79)

(3.80)



b1(L»5) = 0
bz(L’ﬂ)

i
=)

The solution procedure follows the same steps as explained in Chapter II.

79

(3.81)

(3.82)
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CHAPTER IV

THERMAL EFFECTS MODEL

Yang et al. (1992) and San Andres et al. (1992) conducted a thorough investigation
of thermohydrodynamic (THD) analysis for cryogenic seals. Yang developed an ap-
proximate THD analysis and provided steady state solution for the case of a centered
seal. San Andres (1992) introduced a full set of bulk flow governing equations for
THD analysis and investigated it with a finite difference based numerical solution.
The results from their study show that for some cryogenic fluids temperature rise due
to friction at the rotor surface may lead to a two phase flow, seriously affecting th-c
performance of the turbomachine.

The goal of this work is to extend the solution procedure developed in previous
chapters to a THD analysis. The governing equations used for this analysis are based
on San Andres et al. (1992) and are given in Eqs. (4.1-4.4). In the analysis developed
in this chapter, the zeroth order equations will be solved for the primary variables,
Uo, Vo, po and Ty for a centered seal. The temperature distribution will then be used
with the variable properties model developed in Chapter III to compute the dynamic
coefficients. In other words, perturbation due to temperature are not included in the
analysis. The goal is to show the viability of current analysis to handle thermal effects
of the energy equation.

Continusty:
5 (oh) + 52(ohu) + 2 (phe) = 0 (4.)

Azial Momentum:

2 i 2 ﬁ ‘ - 92 A
at(puh)'}' az(Phu )+ 6q(phuv) - haz +"'zv|o (4‘2)
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Circumferential Momentum:

0 8 7] 2 _ @ h
5 (Phv) + g-lohun) + - (ph?) = —hel + o] (4.3)
Energy Equation:
8 e} 8 _ op O Op
CP{b—t(phT) a (Ph'U.T) 6q(pth)} + QC - Tﬂ"h{ at 6 + az

+ wR(gyln) = v(rgyle) — u(Talg) (44)

where, ¢ = R and the shear stress terms, 7., 7, etc., are given as,

mle = eV + fosyfui (v—w)?) (4.5)
ol = - (f,;—}\/u’+v’ + f,(”;‘”) u? + (v — w)?) (4.6)
Twlh = g‘g‘e + _{fl fr(v;w)Rf} (47)

The heat transferred, Q, is given by,

hf(T - Tratm-) + hl(T - Tseal) (4'9)

Eq. (4.8) is for adiabatic case where there in no heat transfer, while Eq. (4.9) is for a

general case. The stator and rotor Reynolds numbers are given as,

R = % u2 + v? (4.10)
R = 2‘;" u? + (v — w)? (4.11)

The heat transfer coefficients for rotor and stator are given by,

bz = pCaTT (L) KLy (4.12)

h(2,0) = pCpfut+(v—w) (%)(E;—) (4.13)
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The fluid properties, density p and viscosity u are assumed to be a function of
local pressure and temperature. MWBR equation of state is used to represent the
fluid properties.

The variation in fluid properties with respect to the axial and circumferential

coordinates, %%, Bpo Buo Bio gre expressed as (Eq. 3.39-3.40),

82 88 82
dpo _ Opo Opo ﬂ’g Q&
8z  8po 0z + 0T, 0z (4.14)
8po _ OpoBpo  Bpo8To
58 ~ op 0B | 9T, 08 (4.15)
O _ Okodm | OkoOTo
5z~ Opo 0z T BT, 5z (4.16)
Opo _ OpaOpo | Opo 8To
9% " Gp08 T 9T, 0B (4.17)

8%y are the circumferential gradients of the primary variables,

where %—‘g, %-‘gl, %,
u,v,p, and T respectively.

Using these relations, Eqs. (4.1-4.4) may be rewritten as,

Sh Oh b6h 6u . Bv 8T, B8p, 8T, O0p
Pt P"g;'*‘ﬂva"*‘ hE*”ha_*E("a_THa (hu BT)
T, 90, 90,0, 9, O B G5 _
+ i —(hv 6T)+ 6t(h6 )+az(h 3 )+ aq(h"ap) =0 (4.18)
Su Ou ou 8p A
,ole-}-phu(9 -{-,ohv(9 = —hg'*""zﬂo (4.19)
Ov Ov Ov Op A
pha%- ha +phvaq h6q+T“l° (4.20)
oT or oT _ Op Bp
pCph{at +u?,7z—+‘v€q—}+Q. = Tﬂ,h{ +v 0q+ az

+ WR(rgn) — (7 l8) — ulra I8) (4.21)

where,

P density



7 dynamic viscosity

g—g rate of change of density with pressure

g% rate of change of density with absolute temperature
Cp specific heat at constant pressure, %—?.L,

B volumetric expansion coefficient, 1 82|,

k thermal conductivity of fluid

I stator friction factor

Ir rotor friction factor

4.1 Zeroth Order Equations
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The zeroth order equations are obtained by dropping the time dependent terms in

Eqgs. (4.18-4.21).

The above equations may again be written in the following fashion.

Sup
8z

Bvg
oz

Spy
8z

8Ty
| Oz

J

i FT(uova,Pm To, %‘ga %?1 %.é'a

Fu(%avo,Po,To, %‘2'3 %?‘a %%v 831'_;_)

3

F(uo, vo, po, To, %‘ng, %‘g's %v 8p )

Fp(uﬂa Vo, Po, TOa %%a %?'s %) ﬂh')

ol
o3 8

The functions F,, F,, F,, Fr are given in Appendix C.

4.2 Zeroth Order Boundary Conditions

).

(4.22)

The boundary conditions for the zeroth order or steady state equations is illustrated

in Figure 4.1.

The following is a summary of the boundary conditions for the zeroth order

equations.



inlet

Po= Py

To= T

Vo= psr{wR)

Figure 4.1 Zeroth Order Boundary Conditions

At the inlet:
azial velocsty, ug:

prior to inlet:

right after inlet:

uo(0,8) = 0

uo(0,8) = uni(0,5)

circumferential velocity, vo:

pressure, po:

prior to inlet:

v9(0,8) = psr xwR

PO(O,ﬂ) = P

84

(4.23)

(4.24)

(4.25)

(4.26)
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right after inlet:
Po(0,8) = po(0,8) (4.27)
temperature, Tp:
prior to inlet:
T(0,8) = T; (4.28)
right after inlet:
T0(0,8) = Ty (4.29)

The pressures p;, Po1(0, 3) and axial velocity u01(0,3) at the inlet are related by,

B = Pu(0.8) = 3o(0,BNE(0,8)(1 + £) (4.30)
70,0 = -8B ey 20AG gy )

4.3 Solution Procedure for Zeroth Order Equations

The solution is based on an iterative procedure and the steps involved are explained
below.

The continuity and momentum equations are solved using the solution procedure
developed in previous chapters. At the outset, a nominal temperature distribution is
assumed for the entire flow field. Typically, a constant temperature, T;, temperature
at inlet, is assumed. At the end of convergence of the continuity and momentum
equations for a given temperature field, the energy equation is integrated using the
updated variables u, v and p. from the previous iteration. At the end of one complete
integration of energy equation, a new temperature distribution, T, (z,3 ), is available
and it is used to update the fluid properties.

The set of continuity and momentum equations are again solved with the up-
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dated properties until the solution converges. The new u, v, and p are then used in
the integration of the energy equation to obtain a new updated temperature distribu-
tion. The cyclic procedure is repeated until two successive temperature distributions
converge to a specified tolerance.

Typically, it takes about 6-8 iterations for the solution to converge.

4.4 Comparison of Current Analysis with San Andres ef al.

San Andres et al. (1992), uses a finite difference scheme to solve the coupled, nonlinear
PDEs of continuity, momentum and energy equations. The procedure they use is
based on the forward marching solution of Launder and Leschziner (1978) and uses
SIMPLEC algorithm of Van Doormal and Raithby (1984). The flow domain is divided
into control volumes and governing equations are integrated on the control volumes to
give sets of nonlinear algebraic difference equations for each primary variable. Then
they implement an iterative procedure where the continuity and momentum equations
are solved followed by the energy equation. The continuity and momentum equations
are allowed to converge to an intermediate limit and then the energy equation is
solved. Fluid properties are updated and the procedure is repeated until the solution
converges.

The main advantage of the solution procedure used in the current work is its
simplicity,

In the current work, an iterative procedure based on the
direct integration of governing equations, is implemented. The problem is reduced to
repeatedly solving a system of 3 ODEs until the temperature distribution converges.

San Andres et al. reported that their method requires about 20 iterations for

the solution to converge. Current solution procedure takes about 6-8 iterations to
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converge.

4.5 First Order Solution

The equations used for first order solution are the same as variables properties model.
As mentioned earlier, the governing equations are not perturbed with respect to
temperature T. The temperature distribution obtained from the zeroth order solution
is used to update the properties as a function of local pressure and temperature and

the dynamic coefficients are computed using the variable properties model of Chapter

ITI.
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CHAPTER V

ARBITRARY PROFILE SEALS

The typical seal geometry of an interstage seal of SSME turbopump has either a
straight or a tapered (convergent) axial profile as shown in Figure. 1.2. This nominal
seal profile may be altered during the course of its operation, for example, as in
the case of SSME interstage seals due to mechanical and thermal distortions. An
example of predicted seal profile of an interstage seal is shown in Figure 1.3. Tests
at NASA/MSFC reveal that seals initially designed with a large convergent taper
have become divergent over a part of the length of the seal during the course of their
operation changing the dynamic characteristics of that seals.

For the purpose of this study, an arbitrary profile seal is a seal whose geometry in
axial and circumferential directions may vary in any specified fashion. For example,
the distorted seal shown in Figure 1.3 would be an example of an arbitrary profile
seal.

This change in the seal profile may be due to distortion such as in the interstage
seals of SSME turbopump or by design itself in order to enhance some optimum

dynamic characteristics of the seal. It has been known for a long time that convergent

3
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Figure 5.1 Examples of Seal Axial Profiles
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seals provide a higher stiffness than a straight seal. It is also a fact that divergent
seals under certain conditions lose stiffness with eccentricity. Generally, of all the
variables that go into the design of an annular seal, the variable that can be easily
modified is the profile of the seal whether it be a straight, tapered or more exotic
shapes. As will be shown with reference to an elliptical seal, even a small change in
seal profile can have a noticeable effect on the dynamic characteristics of the seal.
The fact that dynamic coefficients can be varied with the profile may be used as a

design criterion to build a seal with a set of optimum dynamic characteristics.

5.1 Example of an Arbitrary Profile Seal: Elliptical Seal

Annular seals initially designed with a circular cross section have been found to ac-
quire, under load, an oval shape similar to an ellipse. Currently, investigations are
being carried out to study the effect of such a change in profile on the flow rates and
dynamic characteristics of these seals. This is the motivation behind the following
study of an elliptical seal.

An elliptical seal is an annular seal with an elliptical cross-section as shown in
Figure 5.3. The clearance function for this seal varies in the circumferential direction
as opposed to a constant clearance for a typical straight or tapered seals with circular
cross-sections. The degree of curvature of the elliptical seal compared to a circular
seal is specified by the parameter ellipticity, § as,

Ce— gy
b = —— 5.1
- (5.1

where ¢, and ¢, are radial clearances at semi-major and semi-minor axes respectively.
For § = 0, the seal is a circular seal and for § = 1 the stator contacts the rotor
and for any value in between, i.c., 0 < § < 1, the seal is an elliptical seal. Figure 5.4
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illustrates an elliptical seal with various ellipticity factors.
The following different cases of axial profile are studied in detail for this elliptical
seal.

1. Straight Profile
2. Linear Profile
3. Quadratic Profile

These axial profiles correspond to zeroth, first order and second curves shown in
Figure 5.1.

The equation of an ellipse is given by,

z = acosfl (5.2)

y = bsing (5.3)

where a and b are the semi-major and semi-minor axes respectively. At any angular

position 3 along the circumference, the radius r of the ellipse is given by,

r(z,0) = \/(aco.sﬂ)2 + (bsing)? (5.4)

and the clearance ¢ at this location is given by,

c(z,8) = r(z,8) — R (5.5)

where R is the radius of the rotor. If the semi-major and semi-minor axes of the ellipse
vary in some functional form along the length of the seal, the clearance function of
this seal is given by,

(2,8) = V(fi(z)cosB)’ + (fa(z)sinB) — R (5.6)



elliptical seal

e
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where fi(z) and f;(z) are the semi-major and semi-minor axes variations along the

z-axis of the ellipse. The function f,(z) for straight, linear and quadratic axial profiles

are given below.

filz) = a (5.7)
filz) = a1+a.z (5.8)
filz) = a1+az+ a2’ (5.9)
fi(z) = b (5.10)
fa(z) = b +baz (5.11)
fa(z) = b +biz+bs2? (5.12)

where a,, a,, as, by, by, bs are constants that define the curvature of the axial profile.
The curvature of the ellipse in the circumferential direction is varied using the
parameter, ellipticity 6. The ellipticity of the seal is defined as (Figure 5.3), ¢ = o

at inlet and ¢, = c, at exit. Therefore, the clearance ¢, 1s given by,
o = c(1-9) (5.13)

The Appendix E provides the functions fi(z) and f5(z) for straight, linear and

quadratic axial profiles as a function of §.

5.2 Results

Three different axial profiles are considered for the elliptical seal and their dynamic
characteristics are studied with reference to similar seals with circular cross-sections.

Results are provided for two cases.

1. Straight elliptical seal compared to a straight circular seal.
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2. Elliptical seal with a linear axial profile compared to a similar seal with a curved

(quadratic) profile.

5.2.1 Straight Elliptical Seal vs. Straight Circular Seal

The plots shown in Figures 5.4-5.7 are comparisons for a straight seal with two
ellipticity factors. For, § = 0, the seal is a circular (straight). For, § = 0.4, the seal
is an elliptical (straight) seal. The various coefficients are normalized with respect to
straight circular seal (§ = 0).

Figure 5.4 shows the variation of direct stiffness for both seals as a function of
eccentricity ratio. Even though, both seals have roughly similar stiffness to start
with, for straight elliptical seal, both K., and K, decrease with eccentricity. In
other words, there is a loss in stiffness with eccentric operation.

The cross coupled stiffness in Figure 5.5 shows the opposite trend, i.e, they
increase with eccentricity, almost exponentially. Such a large in cross coupled coeffi-
cients should be a cause for concern form a stability point of view.

Damping, shown in Figure 5.6, increases slightly with eccentricity but not to the
extent of the circular seal. Leakage, shown in F igure 5.7, is smaller for elliptical seal.

In short, the elliptical seal compared with the circular seal shows the following

trends as a function of eccentricity.
1. Loss in direct stiffness.
2. Large increase in cross coupled stiffness.
3. Relatively small increase in damping.
4. Reduction in leakage.

Except for the reduced leakage rate, all other comparisons point to the fact that
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a straight elliptical seal is a bad design compared to a similar circular seal from a

rotordynamic point of view.

5.2.2 Linear Profile vs. Curved Profile

The results shown in Figures 5.8-5.11, compare the results of an elliptical seal with
a linear axial profile with a similar with a curved (quadratic) axial profile. The
results are presented for a centered seal as a function of ellipticity, §. The dynamic
coefficients are normalized with respect to the coefficients for the linear profile case
at § = 0. The values used for this normalization are K,, = 44975 kN/m (256883
Ib/in), Cee = 21.78 kN-s/m (124.4 Ib-s/in) and k., = 15821 kN/m (90364 Ib/in).

For this study, the mid-point clearance of the quadratic profile is made 75% of
(ci+ce)/2,i.e., 0.75 times the mid-point clearance of a linear profile with similar inlet
and exit clearances.

The plot for direct stiffness in Figure 5.8 shows the effect of a change in profile on
the direct stiffness. For the linear case, there is a complete loss of stiffness at around
6 = 0.65. The stiffness for the quadratic profile is almost twice that of the linear
profile. Also, it retains its stiffness over a much wider range than the linear profile.
The difference in the other coefficients, shown in Figures 5.9-5.10, are relatively small.

There is a drop of about 25% in leakage for the curved profile.

Based on these results, the following conclusions may be drawn.

1. Complete loss of stiffness for linear profile at § = 0.65.
2. The direct stiffness of curved profile is almost double that of linear profile.

3. There is a 25% reduction in leakage for curved profile.

This example illustrates the effect of seal profile on the dynamic coefficients. This

example shows that and an arbitrary seal profile, other than a straight or tapered,



97

could possibly be used as a criterion in designing a seal for a set of optimum dynamic

characteristics.

5.3 Case Study of a Distorted Seal of SSME-ATD-HPOTP

The predicted clearance profile of an interstage seal of the SSME-ATD-HPOTP tur-
bopump is shown in Figure 1.3. The distorted clearance profile is obtained from a
thermo-elastic finite element analysis of the tﬁrbopump. The clearances are obtained
at six equidistant axia] planes along the length of the seal with 68 clearances at each
plane. The clearances along the circumference are located, roughly, at equali angular
displacements.

The general procedure employed at NASA/MSFC with these distorted profiles
is to compute the average inlet and exit clearances and used them as inlet and exit
clearances of a tapered seal. In this study, rotordynamic coefficients of the distorted
seal are compared with those computed using average clearances at inlet and out-
let. The seal geometry and operating conditions at full power level (FPL) are given
in Appendix G. The clearance function for this seal is approximated by fitting the
clearance data with bi-cubic splines. This 2-D curve fitting enables the numerical
computation of clearance, c(z,8), and gradients %;, g;: at any given grid location
(z,8). According to the manufacturer’s specifications, the side-load on this seal acts
at a constant angle of 290°. The dynamic coefficients for this variable profile seal are
computed as a function of side-load acting at this angle. The concept of external load
based dynamic coefficients is discussed in section 2.10.

Figure 5.12 shows the the relation between seal forces and eccentricity. At zero

load, distorted profile shows an eccentricity. No load operation requires the seal to be

slightly off-centered due to the uneven distribution of fluid pressure in the distorted
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seal. Leakage, for the average profile and the distorted profile, is shown in F igure 5.13.
There is small increase jg leakage for the distorted seal.
Figure 5.14 shows the variation of direct stiffness, K,,, K,y as a function of

external load for both average and distorted profiles. The cross coupled stiffness

analysis and distorted seal analysis. There js an appreciable difference, particularly
at high loads.

5.4 Directional Dependence of Dynamic Coefficients

Typically, as in the case of a plain journal bearing, the dynamic coefficients of an
annular seal are computed in & minimum film thickness coordinate system (z',y)
as shown in Figure 5.17. The seal represented in this figure is of a circular Cross
section, similar to a plain journal bearing. In this figure, (z,y) represents the global
coordinate system fixed to the stator and is the coordinate system normally used
in rotordynamic simulations. Therefore, the dynamic coefficients irrespective of the
coordinate system in which they are computed should be transformed into this fixed
coordinate system before they can be used in simulation studies,

For dynamic coefficients computed at eccentricities greater than zero, th eccen-

tricity is varied along the z'-axis of the minimum film thickness system and the

In Figure 5.17, the angle of rotation between the minimum film thickness system

and the fixed coordinate system is ¢ and is also known as the eccentricity angle as
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it defines the eccentricity vector with respect to the fixed coordinate system. The
points O and C refer to the center of seal and rotor respectively and the line passing
through these two points is the line of centers.

The transformation of dynamic coefficients computed in a minimum film thick-
ness system into fixed coordinate system is explained below.

Let [Q] be the transformation matrix between the minimum film thickness system
specified by (z',y') coordinate system and and the global coordinate system repre-
sented by (z,y). The angle of rotation between these two coordinate systems is ¢,
which is also the eccentricity angle as shown in Figure 5.18. Given a dynamic coef-
ficient in (2, Y') system, it is required to transform it into (z,y) coordinate system,

which is the coordinate system normally used for simulatjons.
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The transformation matrix [Q] and its inverse [Q]~! is given below.

Q] = cosp sind (5.14)

—sing cosd

cosp —sing
[Q]-l = v (5.15)
sing cos¢
Let the set of 12 dynamic coefficients at any given eccentricity e in the minimum
film thickness coordinate system (z',y’) be specified by the stiffness matrix [K'],

damping matrix [C"] and the inertia matrix [M].

K, kK,
[K'(e,0)] = v g (5.16)
[ Cle Cuy
[C'(e,0)] = (5.17)
i —ce C,
[ M., m,,
[M'(e,0)] = (5.18)
I -m,, M,

Let the set of 12 dynamic coefficients at the same eccentricity e as above, but in
the global coordinate system (z,y) be given by by the stiffness matrix (K|, damping

matrix [C] and the inertia matrix [M].

[K(e’ ¢)] = (5'19)
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Cee
[Cle,9)] = ;'“ (5.20)
—Cyz v
M., Mgy
[M(e,8)] = y (5.21)

The two sets of dynamic coefficients are related by the following transformation.

(K(e,8)] = [Q]7'[K"(e,0)][Q)] (5.22)
[Cle,8)] = [Q]7'[C'(e, 0)][Q)] (5.23)
[M(e,6)] = [Q)7[M(e,0)}[Q] (5.24)

For a seal with a circular cross section, the coefficients computed in the minimum
film thickness system will be the same irrespective of the eccentricity angle ¢. In
other words, coefficients computed at two different orientations ¢, and at ¢, in the
minimum film thickness system will be the same. Typically, the (z/, va) is aligned
with (z,y),i.e, ¢ = 0, when these coeflicients are computed. The results given in seal
literature are usually computed in this fashion.

However, this procedure is no not valid with seals of non-circular cross sections,
i.e., seals with circumferentially varying clearance functions. For these seals, the
dynamic coefficients computed in the minimum film thickness vary with eccentricity
angle and because of this the orientation of the (z,y') system with respect to (z,y)
is important. One way to handle this is to compute these coefficient directly in the
fixed coordinate system for a given eccentricity angle, or compute the coefficients in
the minimum film thickness system and transform them using the transformations
given in Egs. (5.22-5.24).
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The following example illustrates the importance of orientation for arbitrary pro-
file seals. Dynamic coefficients for a circular seal (ellipticity, § = 0) and an elliptical
seal (ellipticity, § = 0.4), are computed using the two different approaches discussed
earlier, for concentric position. Comparison plots for direct stiffness K.., cross cou-
pled stiffness k., and direct damping C,, computed using two approaches discussed
above are shown in Figures 5.19-5.21.

In these figures, Actual Coefficients refer to coefficients computed directly in the
fixed coordinate system (z,y) for a given eccentricity angle. The eccentricity an-
gle is swept form 0 to 360° and these coefficients are computed at regular intervals.
The Transformed Coefficients are coefficients computed in a minimum film thick-
ness system aligned with fixed coordinate system, and then transformed for a given
eccentricity angle using the transformations in Eqgs (5.22-5.24).

For the § = 0 case, i.e, for a circular seal, there is no difference between the
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two approaches. The transformed coefficients coincide with actual coefficients at all
orientations, as expected. The same procedure repeated for an elliptical seal (§ = 0.4),
shows the differences between the two approaches. The transformed coeflicients are
entirely different from actual coefficients computed in the fixed coordinate system.

Therefore,.for seals with non-circular cross sections, either the coefficients are
to be computed in the fixed coordinate system at a given eccentricity angle, or if a
minimum film thickness system is used, the actual eccentricity angle should be used
to transform them into the fixed coordinate system. In other words, for these seals,
dynamic coefficients should always be referred with respect to the orientation at which
they are computed. |

This the primary reason for using a fixed coordinate system for the analysis of

arbitrary profile seals, for example, the distorted seal case and the elliptical seal case.
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CHAPTER VI

RESULTS
In this chapter, current analysis is compared with both experimental and theo-
retical results from literature.

The following cases are studied in detail.

1. Childs and Lindsey (1993): This study presents experimental and theoretical
results for high speed, short length, smooth, liquid annular seals with an axial
taper. Experimental results are presented for both concentric and eccentric
tests. Theoretical results for concentric case are based on Childs’ (1993) code
MUDY, while similar results for eccentric tests are based on San Andres’ (1991)
seal code HSEAL. The friction model is Moody’s and constant properties are

assumed.

2. Childs and Kim (1985): Theoretical and test results for a concentric seal based

on Hirs’ friction model and constant properties.

3. Scharrer and Nunez ( 1989): Theoretical results for a seal with a wavy (distorted)
profile in the axial direction. The friction factor is based on Hirs’ model and

constant properties are used.

4. Scharrer and Nelson (1990): Theoretical results for & partially tapered annular
seal. Results are for a concentric seal with Hirs’ friction model and constant

properties.

5. Jenssen (1970): Experimental results (seal forces) for smooth annular seals as

a function of eccentricity.
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- Kanki and Kawakami (1984): Experimental results for long pump annular seals.

Theoretical predictions of Nelson and Nguyen are included.

- Falco et al. (1984): Experimental and theoretical results for plain annular seals.

Theoretical predictions of Nelson and Nguyen are included.

. Allaire et al. (1976): Theoretical results based on short seal assumption and a

Blassius type friction model. Theoretical predictions of Nelson and Nguyen are
included.

. San Andres et al. (1992): Theoretical results for a cryogenic seal with Moody’s

friction model, Isothermal flow with variable properties.

San Andres et al. (1992): Theoretical results for a cryogenic seal with Moody’s

friction model, Adiabatic flow with variable properties.

Childs and Lindsey (1993)

The results discussed in this section are based on the combined experimental and

theoretical work of Childs and Lindsey (1993). A summary of this work is presented
below.

6.1.1 Work Summary

This work presents theoretical and experimental results for water lubricated, short

length, smooth, liquid annular seals with an axial taper. Experiments are con-

ducted with five different seal configurations at three different pressure differentials,

1.38 Mpa, 2.41 Mpa, and 3.45 Mpa. The experiments are repeated at three speeds

10200 rpm, 17400 rpm and 26400 rpm.
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Table 6.1 Seal Geometry for Childs and Lindsey

seal no. taper par. (q) | ¢;(mm) | c.(mm) | c.(mm)
1, maximum divergent seal -0.29 0.076 0.137 0.076
2, slightly divergent seal -0.12 0.076 0.097 0.076
3, straight seal 0.00 0.076 0.076 0.076
4, slightly convergent seal 0.12 0.097 0.076 0.076
5, maximum convergent seal 0.29 0.137 0.076 0.076

In this study, the experimental results are compared with the theoretical predic-
tion of Childs’ (1993) computer code MUDY for concentric test results and with the
predictions of San Andres’ (1991) seal code HSEAL for eccentric test results. San
Andres’ analysis employs a finite difference based solution scheme while Childs uses
direct integration. The friction model used is Moody’s and constant fluid properties
are assumed.

The taper ratio of a seal is specified by the taper parameter g which is defined

as,
G— G
= 6.1
17 ate (6.1
and for,
=0 straight seal geometry
g>0 convergent seal geometry

g<o0 divergent seal geometry

The five seal configurations used in the study are identified by their taper pa-

rameter g as given in Table 6.1.
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It is assumed in this study that the pre-swirl ratio for a short annular seal is
approximately equal to its whirl-frequency ratio. This ratio for each case is determined

from the experimentally measured rotordynamic coefficients as,

— kzv — kvz
WFR = R (6.2)

and are tabulated for all cases. This data is included in Appendix G.

The seals are classified as smooth seals and the stator and rotor relative rough-
ness is based on Moody friction model. The stator and rotor relative roughness, inlet
loss coefficient, and exit pressure recovery coefficient are selected to match theoretical
and experimental flow rates and the best set of values used in the theoretical predic-
tions for all cases are given as,
inlet loss coefficient, §; 0.1
exit pressure recovery coefficient, £, 1.0
stator rel. roughness (Moody, smooth)  0.001

rotor rel. roughness (Moody, smooth) 0.001

Experimental results are provided for concentric and eccentric seal tests. For
the concentric position runs, all five seal configurations are used. For the eccentric
position runs, results are provided only for the straight seal (¢ = 0) and the slightly
convergent seal (¢ = 0.12). The experimental results include measured flow rates and

rotordynamic coefficients.

6.1.2 Comparative Study

The experimental and theoretical data included in this study present an excellent
opportunity to compare the results of the present work with the analyses of Childs’

and San Andres’ since one of the problems associated with studies involving combined
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experimental/theoretical data is a lack of consistent input data for theoretical predic-
tions and each researcher typically chooses his or her own set of input data to match
the experimental data. The ob jectives of this comparative study are two fold. One is
to to compare the theoretical predictions of current analysis with experimental data
and the other more important objective is to compare current analysis with Childs’
and San Andres’ analyses under similar assumed input data. This comparative study
is significant in the sense that the results from the current analysis are being com-
pared to the analyses of Childs and San Andres, who use solution procedures different
from the current work, though all three analyses essentially use the same bulk flow
governing equations, friction factor and boundary conditions.

In the following comparisons, the theoretical predictions are repeated based on
the current analysis using exactly the same input parameters, i.e., same pre-swirl, inlet
loss coefficient, exit pressure recovery coeflicient, stator and rotor relative roughness,
density and viscosity as reported by Lindsey (1993). The predictions from current
analysis are repeated for both nominal clearances and measured clearances. Measured
clearances are clearances measured under running conditions and take into account
(Lindsey, 1993) the rotor growth and change in nominal seal clearance during the
operation.

As will be evident from the comparative study to follow, the results based on
nominal clearances (NCLR) are consistently closer to the experimental data than
the results based on measured clearances (MCLR), suggesting possibly a need for
refinement of the measurement system used for measuring these clearances.

In the plots shown for this study, N refers to results based on nominal clear-
ances, and M refers to results based on measured clearances. Nominal clearances
based results are available only for current analysis. For comparisons between various

analyses, i.e, current analysis, Childs and San Andres, the results based on measured
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clearances are used.
In the following study, results from current analysis are provided for all cases

given below.
1. 5 seal configurations, taper par. ¢: -0.29, -0.12, 0.00, 0.12, 0.29
2. 3 pressure differentials, Ap: 1.38 Mpa, 2.41 Mpa, 3.45 Mpa
3. 3 rotor speeds, N: 10200 rpm, 17400 rpm, 24600 rpm

4. Concentric and eccentric tests.

6.1.3 Leakage, Concentric Tests

The leakage for concentric seal operation as a function of taper parameter g is
given in Figure 6.1. As mentioned earlier, Lindsey uses Childs’ code MUDY based
on Moody’s friction model, for theoretical predictions of concentric seal tests. These
predictions from MUDY along with the predictions from the current analysis for both
NCLR and MCLR are shown in this figure. As may be noted from this plot, there is
a considerable difference between predictions based on MCLR and the experimental
data. However, the leakage based on NCLR show very good agreement particularly
for the convergent seal geometry where there is almost exact correlation with the
experimental data for all speeds and pressure differentials. The maximum deviation
is about 12% and it occurs for the maximum divergent case at 3.45 pressure differential
and 24600 rpm case. This result is directly opposite to the results based on MCLR
which are closest to experimental data for the maximum divergent case. In almost
all cases, current analysis with MCLR predicts leakage which is slightly (about 10~
15/Childs’ predictions. One of the possible reasons for current analysis based on

NCLR being much closer to the convergent seals’ results compared to the divergent
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seals’ may be due to flow separation that is likely to occur in divergent seal geometries
(Scharrer and Nelson, 1990) and bulk flow model used is not equipped to deal with
that type of flow.

6.1.4 Dynamic Coefficients, Concentric Tests

The rotordynamic coefficients for the concentric tests are shown in Figure 6.2.
for 10200 rpm case and in Figure 6.3 for the 17400 rpm case. The correlation between
theoretical and expcriment.a.l data for direct stiffness is, at best, average. However?
the present analysis results based on NCLR show a much better correlation with
experimental data than the MCLR based analysis. particularly for higher pressure
differentials. Both current analysis (MCLR) and Childs agree well with the experi-
mental data for the highly convergent case. Also, the theoretical predictions generally
follow the trend of the experimental results, i.e., increase in stiffness with taper param-
eter g. The maximum deviation for direct stiffness occurs for the maximum divergent
case and a possible reason is flow separation as mentioned earlier.

Both MUDY and current analysis predict similar damping and cross coupled
stiffness. The added mass is severely under-predicted by both analyses, and Lindsey
(1993) points out that this big difference may be due to unaccounted fluid inertia
effects in the housing and piping system. In spite of the above reason, theoretical
predictions typically under-predict mass coefficients.

Similar trends are noted for the dynamic coefficients of the 17400 rPm case ex-
cept for the damping where the difference between theoretical and experimental data

increase.
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6.1.5 Leakage, Straight Seal, Eccentric Tests

For eccentric tests, experimental data is available only for two seal configurations;
a straight seal (¢ = 0) and a slightly convergent seal (¢ = 0.12). The code used for
theoretical predictions for eccentric seal analysis is HSEAL, developed by San Andres
(1991) and is based on a finite difference formulation. The plots shown in Figure 6.4
correspond to the leakage of a straight seal operated at an eccentric position with
eccentricity ratios varying from 0 to 0.5 and for three speeds. The prediction of the
leakage rate by current analysis is typically 10-15% better than HSEAL predictions.
However, the maximum difference between test data and current analysis based on
NCLR is only about 10%.

The large deviations predicted by HSEAL are inexplicable and

6.1.6 Dynamic Coefficients, Straight Seal, Eccentric Tests

The plots in Figure 6.5 refer to the dynamic coefficients for the straight seal op-
erated at various eccentricities. Predictions by both the current analysis and HSEAL
are similar and follow the trends of the experimental data. Good comparison for
direct damping and cross coupled stiffness for both analyses.

Similar trends are seen for the 17400 Ipm case.

6.1.7 Leakage, Slightly Convergent Seal, Eccentric

The results in this section correspond to the leakage of the slightly convergent seal
(g = 0.12). As noted earlier, there is excellent correlation between current analysis
(NCLR) and measured flow rates for the convergent geometry seals (Figure 6.1).
This very good correlation is repeated for the case of slightly convergent seal shown
in Figure 6.7. Best comparison of flow rates for all seal configurations tested. These
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results based on nominal clearances point to the fact that possibly the measurement
system employed to measure clearances during operation need to be refined.

There is considerable difference of more than 20% in leakage predictions between
current analysis (MCLR) and San Anpdres’ results, particularly for 17400 rpm and
24600 rpm cases.

6.1.8 Dynamic Coefficients, Convergent Seal, Eccentric Tests

The plots in Figure 6.8 and Figure 6.9 correspond to the dynamic coefficients for the
slightly convergent seal configuration at 10200 rpm and 17400 rpm respectively. Ex-
cellent comparison of flow rates (NCL) translate into better correlation with dynamic
coeflicients, particularly for direct stiffness. For current analysis based on MCLR
and San Andres report similar dynamic coefficients, with a slight variation in direct

stiffness for the higher pressure differential case.

6.1.9 Conclusions

Lindsey makes the following conclusions based on the above study.

1. In general, results are consistent with theoretical predictions, except for flow

rates.
2. Theory largely under predicts flow rates.
3. Flow rates comparison best for maximum divergent case
4. Direct Stiffness increases with taper parameter q.
5. Cross coupled stiffness predicted well by theory.

6. Damping decreases for ¢ < 0 and g>0.
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7. Damping increases with eccentricity ratio.

8. For eccentric seals, the dynamic coefficients remain relatively constant upto an

eccentricity ratio of 0.5.

Current analysis predictions based on nominal clearances for flow rates are much
closer to measured flow rates than measured clearances based analyses. For conver-
gent seal geometry, the flow rates almost match exactly. When measure clearances
are used, current analysis shows a slightly better agreement (10-15%) than either
MUDY or HSEAL. Comparison of all analyses in the case of direct stiffness is, at '
best, average. Current analysis based on NCLR gives a better correlation than the
other analyses based on MCLR.

6.2 Childs and Kim (1985), Hirs Model

Childs and Kim (1985 presented an analytical and experimental study for rotordy-
namic coefficients of turbulent annular seals with different directionally-homogeneous
surface roughness treatments for rotor and stator surfaces. The friction model is
based on Hirs’ model and constant properties are assumed and the analysis is for a
concentric seal. The seal code based on the the analytical part of this study had been
the mainstay of seal analysis work at NASA /MSFC for many years. MSFC provided
this author with data for some test cases which were then compared with the results
from the present analysis for Hirs’ friction model. Results from one of the test cases
is given in Table 6.2. The seal data for this example is given in Appendix G.

The results from current analysis for Hirs’ friction model match well with the

results of Childs and Kim (1985). ‘



Table 6.2 Childs and Kim Check Case, Hirs’ Model

Data | Childs/Kim | Current Analysis
K.. |88.14 MN/m | 88.14 MN/m

key |11.11 MN/m | 11.11 MN/m
Cee |16.15 kN-s/m | 16.14 kN-s/m
Cey | 0.419 kN-s/m | 0.419 kN-s/m
M.. |0.3215 kg 0.3214 kg

mey |-0.0024 kg | 0.0005 kg

Q 7.959 kg/s 7.959 kg/s
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6.3 Scharrer and Nunez (1989)

The effect of seal distortions on rotordynamic coefficients was first considered by
Sharrer and Nunez (1989). They reported that a 2-D, axisymmetric, finite element
analysis which considered the internal pressure distribution, and the boundary condi-
tions due to assembly and operating interferences produced a clearance profile which
was wavy and different from the nominal design tapered profile.

This distorted seal profile in the axial direction was fitted with a clearance func-

tion in the form of a polynomial as,
h(z) = 61 + 622 + a32® + aez® + apzt (6.3)

where the coefficients a,, a3, - - etc., are coefficients chosen to fit the distorted axial
profile.
They adapted the analysis of a plain seal to the case of a wavy profile seal. They
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Table 6.3 Scharrer and Nunez, Rough Wavy Seal Case

Data | Scharrer/Nunez | Current Analysis
K.. | 46.35 MN/m 57.30 MN/m
key 52.02 MN/m 51.57 MN/m
Cee | 33.42 kN-s/m 33.65 kN-s/m
Cay 1.49 kN-s/m 1.43 kN-s/m
M.. 0.753 kg 0.772 kg
My 0.026 kg 0.015 kg

Q 0.471 kg/s 0.462 kg/s

reported a marked change in the computed rotordynamic coefficients due to a change
in the seal profile. These changes include, a) loss in direct stiffness b) increase in
cross coupled stiffness c) increase in damping. The results for the case of rough wavy

seal is given in Table 6.3. The direct stiffness between two analyses differ by about
20%.

6.4 Scharrer a.nd Nelson (1990)

Scharrer and Nelson (1990) conducted a theoretical study of an annular seal with a
partially tapered clearance. In this study, they investigated the axial distortion prob-
lem. They tried to correct the predicted distortions by machining out the undesirable
distortions at the design stage itself. The model they used to accomplish this is a
seal with a taper on part of length of the seal. Using this model, they conducted a
parametric study of various performance characteristics as & function of taper length

to total length ratio (T/L). Based on this study they recommended optimum ratio
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Figure 6.10 Scharrer and Nelson, A Partially Tapered Annular Seal

of T/L for best performance of these partially tapered seals from a rotordynamic
analysis point of view. |
They developed the analysis based on Hirs’ turbulent lubrication equations (Hirs’
friction model). In this analysis, the seal is assumed to have a taper only over a portion
of the length of the seal and the rest of the seal is treated as a straight seal.
Figure 6.7 shows the details of a partially tapered seal. L is the total length
and T is the taper length and ¢; and ¢, are inlet and exit clearances. The taper

length/total length ratio is varied by varying the parameter, g given as,
g =T/L (6.4)

The seal is a completely straight seal for g=0i.e.,c; = c, and a fully tapered seal for
g = 1.0. This ratio is varied from 0 to 1 and its effect on leakage and rotordynamic

coefficients is studied.
They analyzed two different seal configurations based on stator and rotor relative

roughness.

1. Taper Smooth (varying gq)

2. Taper Rough (varying q)
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Table 6.4 Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=1.0

Data | Scharrer/Nelson | Current Analysis

Kee | 242.0 MN/m 215.0 MN/m

kzy 65.5 MN/m 62.6 MN/m
Ce= 26.0 kN-s/m 24.8 kN-s/m
M,. 0.66 kg 0.66 kg

For both the above cases, the inlet clearance to exit clearance ratio 5: is main-

tained at 3. A portion of results from that study along with current analysis results
are presented in Tables 6.4-6.9.

6.4.1 Smooth Seals

For the case of smooth seals, results are compared for three taper ratios;
1. taper ratio, ¢ = 1, a fully tapered seal.
2. taper ratio, ¢ = 0.4, a partially tapered seal.

3. taper ratio, g = 0.0, a fully straight seal.

~ Results given in Tables 6.4-6.6 show about 20% difference in K,, and slightly

smaller deviations for k., for all cases.
6.4.2 Rough Seals

Similar results are reproduced for the case of rough seal for three different taper

ratios. The results are shown in Tables 6.7-6.9. Again, as in the case of smooth seals,



Table 6.5 Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=0.4

Data | Scharrer/Nelson | Current Analysis
Kee | 220.0 MN/m 179.7 MN/m
ko, | 82.0 MN/m 75.26 MN/m
Ce: 32.0 kN-s/m 29.45 kN-s/m
M.. 0.55 kg 0.55 kg

Table 6.6 Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=0.0

Data | Scharrer/Nelson | Current Analysis
K., 152.0 MN/m 159.0 MN/m
key 102.5 MN/m 105.2 MN/m
Cee 39.2 kN-s/m 40.1 kN-s/m
M. 1.02 kg 1.02 kg
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Table 6.7 Scharrer and Nelson, Partially Tapered Seals (Rough), Taper=1.0

Data | Scharrer/Nelson | Current Analysis
Kee | 222.0 MN/m 194.0 MN/m

ks, 61.0 MN/m 57.9 MN/m
Cee-| 25.8 kN-s/m 24.3 kN-s/m
M., 0.66 kg 0.66 kg

there is difference of about 20% in direct stiffness. Both analyses use same governing
equations with Hirs’ friction model.

To explain this discrepancy, the results from this study are compared to Childs
and Kim (1985) as all three analyses use the same governing equations based on
Hirs’ friction model and differing only in the solution procedure adopted. The results
of this comparison are shown in Tables 6.10~6.11. These results show Scharrer and
Nelson’s analysis differs from Childs’ and current analysis consistently. It is likely
that Scharrer was using the same analysis that he and Nunez (1989) used for the
wavy profile seal analysis where a similar discrepancy was also noted. The seal data
for this study is included in Appendix G.

6.5 Jenssen (1970)

Jenssen (1970) investigated experimentally the load bearing capacity of smooth liquid
annular seals at various eccentricities. The test data was collected for three pressure
differentials, 0.344 Mpa, 1.034 Mpa, 1.724 Mpa and at three different speeds 3000 rpm,
5000 rpm and 7000 rpm. The seals used in the experiment are long seals (L/D=1.025)

with water as the working fluid. He also presents theoretical predictions based on



Table 6.8 Scharrer and Nelson, Partially Tapered Seals (Rough), Taper=0.4

Data | Scharrer/Nelson | Current Analysis
K,. 190.0 MN/m 170.2 MN/m
key 68.0 MN/m 70.0 MN/m
Cee 29.0 kN-s/m 29.0 kN-s/m
M,. 0.67 kg 0.59 kg

Table 6.9 Scharrer and Nelson, Partially Tapered Seals (Rough), Taper=0.0

Data

Scharrer/Nelson

Current Analysis

K.

kzy
C.

118.0 MN/m
87.5 MN/m
38.2 kN-s/m

M..

1.08 kg

121.0 MN/m
89.3 MN/m
38.6 kN-s/m

1.09 kg
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Table 6.10 Scharrer and Nelson, Comparison with Childs and Kim, Taper=1.0, Rough

Data | Scharrer/Nelson | Childs/Kim | Current Analysis
Kee 2420 MN/m | 215.7 MN/m | 214.8 MN/m
key 65.52 MN/m | 62.74 MN/m | 62.69 MN/m
Coee 26.0 kN-s/m | 24.8 kN-s/m 24.8 kN-s/m
Cey - 3.16 kN-s/m 3.16 kN-s/m
M,. 0.66 kg 0.66 kg 0.66 kg
My - 0.0027 kg -0.0041 kg
Q - 9.568 kg/s 9.551 kg/s

Table 6.11 Scharrer and Nelson, Comparison with Childs and Kim, Taper=1.0, Rough

Data | Scharrer/Nelson | Childs/Kim | Current Analysis
Kee 222.0 MN/m 194.6 MN/m 193.8 MN/m
key 61.0 MN/m 58.1 MN/m 57.9 MN/m
Ces | 25.80 kN-s/m | 24.36 kN-s/m | 24.30 kN-s/m
Cey - 2.72 kN-s/m 2.72 kN-s/m
M, 0.66 kg 0.66 kg 0.66 kg
My - -0.0042 kg -0.0074 kg
Q - 8.356 kg/s 8.346 kg/s
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Figure 6.11 Seal Force at 3000 rpm, Jenssen

short seal assumption which are not shown here. The seal input data for this case is
taken from Nguyen (1988) and is given in the Appendix G. Results from the current
analysis along with the expcrime;ltal data are given Figures 6.11-6.13, for the three
rotor speeds.

The steady state seal forces are plotted as a function of eccentricity ratio and
the predictions from the current analysis agree well with the experimental data for

all pressure differentials and at all speeds.

6.6 Kanki and Kawakami (1984)

Kanki and Kawakami (1984) investigated the dynamic bearing effects of long pump
annular seals as a function of eccentricity. Nguyen (1988), reported convergence

problewis at eccentricity ratios of above 0.4 with the original method as shown in the
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plots Figures 6.14-6.18. Beyond 0.4 eccentricity ratio, Nguyen’s method has problems
converging and he attributes this convergence problem to to the onset of laminar flow
and inability of the analysis to deal with negative direct stiffness. However, with*the
current analysis such a problem is not encountered. The test seal is a long smooth
seal (L/D=1.0) and the working fluid is water.

The results for this case along with Nguyen’s results are shown in Figures 6.14-
6.18. It is true that the solution procedure has problems dealing with negative direct
stiffness. However, this condition is rarely encountered in practical seal design and
thus need not of major concern as far as the efficacy of this analysis is concerned.

Figure 6.14 shows the steady state seal force as a function of eccentricity. Nguyen
(1988) results are only upto 0.4 due to numerical problems while the current analysis
gives reasonably good results upto 0.65.

Nguyen’s analysis predicts direct stiffness K, to decrease with eccentricity as
shown in Figure 6.15. Current analysis predicts this direct stiffness in line with the
test data, i.e., increase with eccentricity for K, and decrease with eccentricity for K,..
Also, Nguyen’s analysis runs into convergence problems around 0.4 eccentricity ratio.
Current analysis encounters no such problems. There is reasonably good comparison
for cross coupled stiffness, k., k., between current analysis and test data.

The main feature of the results presented in this case is the better convergence
properties of the current analysis based on cubic splines compared to the original
approach of Nelson and Nguyen based on Fast Fourier Transforms (FFT). Also, the
results from current analysis agree with experimental data better than Nelson and

Nguyen’s analysis.
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Figure 6.16 Cross Coupled Stiffness, k., kyz for Kanki and Kawakami
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Figure 6.17 Direct Damping, C,., C,y, for Kanki and Kawakami
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Figure 6.18 Cross Coupled Damping, cpy, ¢, for Kanki and Kawakami

6.7 Falco et al. (1984)

In this combined experimental and theoretical work, Falco et al. investigated the
effect of eccentricity on the dynamic coefficients of an annular seal. Their analytical
work was based on a finite element model and they compared the analytical results
with experimental test data. They compared their theoretical predictions with the
various methods in use at that time and concluded that their finite element based
analysis provided the best comparison with experimental data. Subsequently, Nguyen
(1988) showed that the predictions from his analysis were in better agreement than
Falco’s theoretical results. In plots shown in Figures 6.22-6.26, Falco’s experimental
results along with Nguyen’s predictions and current analysis results are given. The
input data used is from Nguyen (1988) and is given in Appendix G. The results show
good comparison with the original Nguyen’s approach.
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Figure 6.22 Direct Inertia, M,,, M., for Falco et al.
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6.8 Allaire et al. (1976)

In this work, Allaire et al. investigated the effects of large eccentricity on the dy-
namic coefficients of interstage seal of Space Shuttle Main Engine High Pressure Fuel
Turbopump (SSME-HPFTP). They used a solution approach using the short seal
assumption (Couette flow) and a Blassius-type turbulent friction factor model. The
results from current analysis along with Nelson and Nguyen predictions are given in
Figures (6.19-6.21). The seal input data is taken from Nguyen (1988) and is included
in the Appendix G.

6.9 Comparison of Variable Properties Model with Constant Properties Model

Results from a distorted seal analysis have been discussed in Chapter V. This exercise

is repeated for the variable properties model developed in Chapter III. Comparisons
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Figure 6.25 Cross Coupled Stiffness, kzy, kyz, for Allaire et al.
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Figure 6.26 Direct Damping, C,., C,, for Allaire et dl.

made between the two models are shown in Figures 6.22-6.27.
The main difference between these two models is a reduction in direct stiffness for
the variable properties case and it difference with eccentricity as shown in Figure 6.22.
This may be explained by the inclusion of compressibility into the analysis, in effect
making the spring softer. There is negligible difference in other coefficients.
Leakage, shown in Figure 6.27, is expectedly smaller for the variable properties

model due to a decrease in density.

6.10 San Andres et al. (1992), Isothermal Case

San Andres et al. (1992) presented theoretical results for a straight seal with thermal

effects and variable fluid properties. Two cases are considered.

1. Isothermal flow
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Figure 6.32 Leakage, Q, for Seal Unit 3-01



151

2. Adiabatic flow

The case of isothermal flow (constant temperature) is the same as the variable
properties model discussed in Chapter ITI, i.e., fluid properties are assumed to be a
function of local pressure and a mean temperature. The results for the isothermal
case from current work are compared with San Andres’ in F igures 6.28-6.33. Direct

stiffness, shown in Figure 6.28, differs by about 20% and this difference is maintained
| at all eccentricities. Agreement for cross coupled stiffness, in Figure 6.29, is slightly
better.

6.11 San Andres et al. (1992), Adiabatic Case

The same case considered in the previous example is repeated with the thermal effects
modei of Chapter IV. The results are shown in Figures (6.34-6.38). are for the
adiabatic case (Q, = 0, no heat transfer). The results are for concentric case and do
not include perturbations in temperature as explained in Chapter IV.

The temperature rise across the seal is shown in Figure 6.34. San Andres points
out that if this rise in temperature is big enough, the fluid may enter a two-phase
region seriously affecting the performance of the turbomachine.

The frictional torque and flow rates shown in Figures 6.35,6.36 roughly match.
Howe\.'cr, cross coupled stiﬁhcss, shown in Figure 6.37 is off by about 25%. Damping,
both C;. and c,, agree wé]l.

6.12 Comparison of Current Analysis with Other Methods

The following general conclusions may be drawn based on the check cases discussed.
Comparison with Nelson and Nguyen:

Expectedly, all check cases with current analysis compare well with their theoretical
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Figure 6.43 Damping, San Andres, Adiabatic

predictions. In some comparisons with the experimental data, the comparison with
current analysis is better than their results. For check cases where their method had
convergence problems and failed, current analysis gives good results.

Comparison with Childs:

The current analysis compares very well with Childs’ Hirs’ friction mode! based anal-
ysis (1985). For this friction model, current analysis matches Childs’ analysis almost
exactly. Similar comparison exists between curren analysis and his more recent work
based on Moody’s model.

Comparison with Scharrer and Nelson:

There is some deviation between their analysis based on Hirs’ friction model and the
current analysis. A three-way comparative study between Childs’ analysis, Schar-
rer and Nelson’ work and the current analysis shows discrepancy in their results.

While Childs and current analysis agree well consistently, their results for stiffness
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coefficients are off by about 20%.

Comparison with San Andres:

There is some deviation between the current analysis and San Andres’ Moody friction
factor based eccentric analysis, both for constant properties and variable properties
cases, particularly for stiffness coefficjents. It appears as though these deviations vary
from case to case. For example, for Childs and Lindsey (1993) experimental results,
the difference in flow rates for convergent seals is considerably large. Same for direct
stiffness at high pressure differentials. However, for other cases the differences are not
of that order. It is difficult to speculate on the reasons for these deviations as both
analyses use entirely different solution procedures.

However, for the current analysis an equivalence will be established between the
dynamic coefficients based transient motion and the same motion based on original
governing equations. For the second approach there is no first order solution involved.
If these two approaches match consisteatly, it establishes, in the minumum, that the

is no error in the linearized coefficients obtained from the dynamic analysis.
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CHAPTER VII

TRANSIENT ANALYSIS

In simulating the dynamics of a rotor system with fluid bearings such as journal,
tilt-pad bearings etc., or an annular seal in the present study, the dynamic effects
of seals for a small motion of the rotor about an equilibrium position are usually
modeled using a linearized force-motion model similar to the one shown in Eq. (7.1).

In this equation, (6z,5y) are the displacements, (6z,6y) are the velocities and
(62,84) are the accelerations in the X and Y directions respectively, relative to a
static operating point (z,y). The fluid force terms AF, and AF, are the incremental
or perturbed fluid forces for a small motion of the rotor shaft about (z,y). These
force components, in general, vary as a function of rotor displacement, translational
velocity and acceleration and are linear only for small orbital motion.

In this model, K., K,,, key, kye are the linearized stiffness coefficients, Cees Coys
Ceys Cye aTe the linearized damping coefficients and M,,, M,,, my,, m,, are the lin-
earized added mass or inertia coefficients at the static operating point or eccentricity

(z,y).

AF, —ke K, || by —ce Cp || &
M, m 6z
+ hid (7.1)

—Mye My, oy
In the linearized model, the terms [K,.5z] and |K,, §y] account for the incremen-
tal fluid reaction forces of the seal due to a small displacement of the rotor (6z, 5y).

The term [k, 6y] is the cross coupled force in the X direction due to & displacement 8y
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in the Y direction. Similarly, [ky=6z] is the cross coupled force in the Y direction due
to a displacement 6z in the X direction. The terms [Ceeb2] and [C,, 69) represent
the incremental damping forces due to a small velocity change (8z,6y). Similarly,
[Mee62] and [M,, 67 are the incremental fluid inertia forces due to a small change in
acceleration (62,46y). For a concentric seal, K, = Ky, key = kye etc., reducing the
number of coefficients from twelve to six. Typically, for an annular seal, the important
coeficients are direct stiffness, cross coupled stiffness, direct damping and direct or
added mass. The contributions of other terms are negligible in most cases compared
to these terms.

These twelve linearized coefficients are, in general, nonlinear functions of the
static operating point (z,y). The variations of direct stiffness K,., direct damping
Cee and cross coupled stiffness k-, for various rotor operating positions for seal unit 3-
02, an experimental seal under design at NASA /MSFC, are shown in Figures 7.2-7.4.
These curves are obtained by the dividing the circumference of the seal into a number
of segments as shown in Figure 7.1 and computing the coeflicients as a function of
eccentricity along each of the radii. For this seal, the coefficients remain constant
upto an eccentricity ratio of 0.4. Beyond this limit, the coefficients start varying and
this variation becomes much more pronounced as the eccentricity ratio exceeds 0.6.
These curves are typical of a tapered seal and similar curves can be obtained for a
straight seal.

In practice, usually a single set of dynamic coefficients computed at centered
position is used to model the dynamic behavior of the seal i.e., to compute seal
forces in rotordynamic simulations. This is based on the experimental and theoretical
observations (Childs 1993) that generally there is little change in dynamic coefficients
upto an eccentricity ratio of 0.4-0.5. In other words, for simulations involving motion

with in this range the dynamic coefficients computed at zero eccentricity should be
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rotor

=

Figure 7.1 Circumferential Grid for Seal Coefficient Mapping

adequate to mode] the seal behavior. For example, at NASA /MSFC for the SSME
turbopump simulations, dynamic coefficients used to model the interstage seal are
computed at zero eccentricity.

It is assumed that this set of coefficients computed for a concentric seal would
reliably predict the dynamic behavior of the seal over its entire range of operation,
which may include motion with large eccentricities. This fact of large eccentric motion
bas been confirmed by the presence of destructive rubs in the SSME turbopump
interstage seals.

This method of modeling a seal using a single set of coefficients is valid only if
the dynamic coeficients remain invariant in the clearance space. For example, for
the seal unit 3-02 (Figs. 7.2-7.4) the coeflicients remain relatively constant as long as
the operating point falls within a circle of radius of about 0.4 eccentricity ratio. As

this limit is exceeded, the coeflicients start varying and the variations are more rapid
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at higher eccentricities.
In general, the above seal model (Eq. 7.1) consisting of 12 coefficients accurately
approximates the dynamic behavior of the seal subject to a few limitations given

below.

1. The model is valid only for a small motion in the immediate neighborhood of
the static operating point at which the set of dynamic coefficients are computed,
typically upto 0.4 eccentricity ratio. This is the basic assumption on which the

linearized coefficients of the model are derived.

2. The dynamic coefficients derived at a given static operating position may not

be accurate when used at a different operating point.

3. Even though these dynamic coefficients can be computed at various eccentrici-
ties, in general it is not possible to decide which set of coefficients to use when

the rotor is moving around in the clearance space such as in a transient motion.

7.1 Objectives

The main objective of this work is to study the effect of large rotor displacements
of SSME-ATD-HPOTP turbopump on the dynamics of the annular seal and the
resulting transient motion.

For the purpose of this study, large eccentric motion is classified into two types
as illustrated in Figures 7.5-7.6. Figure 7.5 shows the time-displacement curve for
the center of a rotor executing a steady state motion with a large amplitude. The
amplitude is of the order of radial clearance (in this case about 0.017 mm) and hence
may be considered as a motion with large displacement.

The motion represented in Figure 7.6 is of the second type where the rotor is
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displaced to a large static eccentric position (€ > 0.4) while executing motion similar
to type 1. The following study is not limited to these two types of motion and these
are used only for the purpose of illustration. The analysis to be developed is valid for
any type of general motion.

Results from the investigation of the first case should help in establishing the
limits of accuracy of the linear force-motion model at a given static operating point.
The basic underlying assumption of this model is that it is valid only for a small
motion, typically for ¢ > 0.4, about the operating point. The exact limits of this
small motion are undefined. The study of second case is more important in the sense
that the study focuses on deviations between the predictions using a single set of
coefficients and the actual dulk flow model motion as the rotor moves through the
clearance space in an arbitrary fashion.

For the purpose of this study, the model of seal represented by a single set of
coefficients will be identified as linear model (¢ = 0). This model, while valid for a
small motion about the centered position, may not be accurate for large off-center
operation of the seal. This off-center motion includes both types of motion described
earlier. One of the objectives of this study is to identify the magnitude of these
deviations and examine the effect of these deviations on the overall stability of the
rotor system and establish limits of effectiveness of using such a model. This task
is accomplished by solving the bulk flow model seal governing equations directly for
transient seal forces for any given type of motion, including motion involving large
eccentricities. Results from this study confirm considerable differences, for large off-
center operation, between the approximate linear model (¢ = 0) and the actual bulk
flow model.

| This approach of solving the governing equations directly for transient seal forces,

while being the most accurate, may not be practical to be included in a rotordynamic
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simulation code, mainly due to the large computing resources required to solve these
equations at each time step. As a matter of fact, this is the primary reason for using
approximate models such as the one shown in Eq. (7.1) in rotordynamic simulation
codes. As an alternative, a general method is developed to model non-linearities
in an annular seal based on dynamic coefficients computed at various static rotor
operating positions in the seal clearance space. This method takes into consideration
the time history of transient motion, i.e., displacement, velocity and acceleration
profiles to compute the transient seal forces at any given instant of time. This method
is extended for approximate displacement, velocity and acceleration profiles to yield
a practical method that is accurate and easy to implement in a rotordynamic‘a.na.lysis
code.

Results from these two methods compare well with those of the actual bulk flow
model for large eccentric motion. These methods, thoroughly tested for various types
of transient motion, provide an efficient and practical means for accurate simulation
of the dynamic effects of an annular seal for any type of motion.

The following tasks are accomplished in this study.

1. Study the effect of large eccentric motion of the rotor on the dynamic behavior
of a SSME-ATD-HPOTP annular seal using the bulk flow model seal governing

equations.

2. Compare the results of the above study with those of the model currently in
use at NASA /MSFC i.e., linear model (e = 0).

3. Develop a method that accurately simulates the dynamics of an annular seal

for large eccentric motion of the rotor.

4. Thoroughly test the method for various types of transient motion using bulk
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flow model results as benchmark.

5. Compare the results of various models and note their their relative merits and

deficiencies.
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CHAPTER VIII

VARIOUS SEAL MODELS FOR TRANSIENT ANALYSIS
In this chapter, the different models used to study the transient analysis with an

annular seal are discussed. These various models differ in the way they compute the

seal reaction forces for any specified motion of the rotor. The four different models

used in this study are explained below.

1. Bulk Flow Model: This model uses a solution procedure based on the actual
set of seal governing equations (Egs. (2.1-2.3)) to compute for transient fluid
forces at each time step based on a specified motion of the center of the rotor..
The results of test cases with this model are used as a benchmark to compare

the other approximate models.

. Linear Model (e = 0): This model is based on the linear force-motion model of
Eq. (7.1) and uses dynamic coefficients computed at zero eccentricity to compute
the fluid forces. This is the model currently being used at NASA/MSFC for
SSME turbopump rotordynamic simulations.

. New Method-I: This model is based on a new method developed to compute the
transient seal forces in a computationally efficient manner. This method makes
use of time history of displacement, velocity and acceleration of the rotor to

compute the seal forces.

. New Method-II: This is a simplified extension of method-1 and it assumes
approximate displacement, velocity and acceleration profiles to compute seal

forces.

These various models are shown in flow chart in Figure 8.1.
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In the following sections, each of the above models is discussed in more detail.

8.1 Transient Analysis with Bulk Flow Model

The linear force-motion model of seal shown in Eq. (7.1) approximates the behavior of
the bulk flow model governing equations for a small motion of the rotor at the static
operating point (z,y). The coefficients in this model are obtained by perturbing the
bulk flow model governing equations given in Egs (2.1-2.3) at (z,y) and fitting the
perturbed fluid forces to the linear model. While the linear model is valid only in the
neighborhood of (z,y), the governing equations are valid at any point in the clearance
space. To study the deviations between the linear mode] at a given operating point
and the actual bulk flow model, this set of governing equations are solved for the

transient fluid forces directly. The Eqgs. (2.1-2.3) are reproduced here for discussion.

Continuity:
8(hu) 1 8(hv) oh
5 TR ta =" (8.1)
Azial Momentum:
h 8p bu v fu 6u
oz - MGGt rg e

+ fixVaTH o + fsVi+ (o - wp (8.2)

Circumferential Momentum:

h 6p Ov v fv bv
—p—Ra—ﬂ- = h{a + i'a—ﬁ‘ + ‘ug}

+hgvere + B TRT e

The film thickness in the global coordinate system is given by (Eq. (2.29)) as,

h(z,8,t) = ‘/(R + ¢)? — (z8inf — ycosB)? — (zcosB + ysinf) — R (8.4)
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and its derivatives with respect to axial and circumferential coordinates are given by,

6h _ _____(R+4o9f (8.5)
9z (R +¢)? — (zsinfB — ycosP)? .
[ (R+ c)g—g — (z8inf — ycosPB)(zcosf + ysinf) (8.6)
68 V(R + ) — (z8inf — ycosfl)? '
oh _ —(z8inf — ycosf)(zainf — ycos) ot - 8.7
ot \/(R + ¢)? — (z8inf — ycosf)? (2e0sf) + gainf) (81)

The time derivatives %, %‘: and %f are approximated using a backward difference

formula.
Gu _ (u(ty) —u(ty))
il (6= 4) (8.8)
O _ (v(tz) = v(ts))
ot (t2 —=1ty)
Op  (p(t:) —p(t))
ot (t2 —t,)

The displacement (z,y) is the displacement of the center of the rotor and (,9)

(8.9)

(8.10)

is the velocity of the center of rotor and (Z, y) is the acceleration of the center of the

rotor.

8.1.1 Transient Seal Forces with Bulk Flow Equations

The solution procedure to solve the above set of partial differential equations
is similar to the procedure discussed in Chapter II. At each time step, Eqgs. (8.1-
8.3) are solved to subject to the the boundary conditions given in Egs. (XX-XX).
The variables u(z,8,t), v(z,8,t) and p(z,B,t) are the time varying velocities and
pressure. At each time step, the pressure distribution p(z,8,t) is integrated along
the length of the seal to compute the two components of the fluid force Fy;i5-, and
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Fiinia_y.

L p2x
= Fruias(t) = [ [ plz,8,) cosp R dpd: (8.11)

L p2x
= Fruia(t) = [ [ plz,8,1) sing R dBd: (8.12)

The computation of these transient fluid forces is carried out in a continuous
fashion from one time step to the next, with the current values of the variables acting
as initial values for the next time step. Numerical integration with respect to time ¢
is implemented using a fourth order Runge-Kutta integrator with adaptive step size.

The following time step is used for the transient analysis.

tn . .

where ¢, is the time period of the system.

8.2 Transient Analysis with Linear Model (e=0)

This is the model usually used to model the dynamic behavior of an annular seal
(Eq. (7.1)). The dynamic coefficients used in the model refer to those computed at
the steady state operating position of the rotor. While these linearized coefficients
can be computed at various eccentricities, it is not possible to decide which set to use
when the rotor is moving in the clearance space in an arbitrary fashion such as in a
transient motion. In practice, the set of coefficients computed at zero eccentricity are
used in the model to compute the seal forces. For example, at NASA/MSFC, SSME

turbopump simulations use this model.

8.3 New Method-I

In this section, a general method is developed to simulate the dynamic behavior of

an annular seal using dynamic coefficients computed at various static eccentricities
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in the clearance space. The motivation for this endeavor is two fold.

o Firstly, there exists a need for a more accurate model to simulate the dynamic
behavior of the seal for motion with ¢ > 0.4 as predicted by the bulk flow model
compared to linear model (¢ = 0) . Large computing resources required to solve
the set of governing equations, Eqgs. (8.1-8.3), make bulk flow model approach

impractical for routine rotordynamic simulations.

o Secondly, it requires a lot less effort to compute dynamic coefficients for a given
seal unit and for a given set of operating conditions and the methodology for

this process is well established.

Consider a single degree of freedom spring-mass-damper system shown in Fig-
ure 8.2. It is assumed that the stiffness (K), damping (C) and mass (M) vary only with
displacement z and are independent of velocity and acceleration. This assumption
follows from the case of an annular seal where the dynamic coefficients are essentially
functions of eccentricity alone. Various restoring forces in the components of this

system are considered below,

8.3.1 Stiffness Force

The incremental restoring stiffness force A fi in the spring due to an infinitesimal

extension éz from z is given by,
Afs = -K(z)bz (8.14)

where K is the spring stiffness.
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Figure 8.2 SDOF Spring-Mass-Damper System

8.3.2 Damping Force

The incremental restoring damping force Af. in a damper due to an infinitesimal

change in velocity 6z is given by,
Afe = -C(z)éz (8.15)
where C is the damping coefficient.

8.3.3 Inertia Force

Similarly, the incremental inertia restoring force Af,, due to an infinitesimal change

in acceleration 6z is given by,

Afmn = -M(z)sz (8.16)

where M is the inertia or mass coefficient.

C-3
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Figure 8.3 Seal Model for a 2 DOF Vibration Model

8.3.4 Theory

Consider the 2-DOF model of the seal in Figure 8.3 as represented by the 12 dynamic
coefficients of the linear force-motion model of Eq. (7.1). at an eccentric position
(z,y). It is assumed that the stiffness, damping and inertia coefficients of this seal
model are known at any static eccentricity (z,y) in the seal clearance space.

Let Kee(2,y), key(2,¥), kie(z,y) and K, (z,y) be the stiffness coefficients, Cee(z,¥),
cey(2:¥)s ce(2,¥), Cn(z,y) are the damping coefficients and Meo(z,y), Mey(z, ),
My (Z,y), Myy(2,y) are the inertia coefficients at eccentricity (z,y).

An implicit assumption is made regarding the dependence of dynamic coefficients
essentially on displacement and they are assumed to be almost independent of ve-
locity and acceleration. This assumption will be verified in the following sections in

comparison with original bulk flow governing equations.



178

The eccentricities or displacements of the center of rotor (z,y) are functions
of time ¢ and may be specified as (z(t),y(t)). Let F.(t;) and F,(t;) be the X and
Y components of the fluid reaction force at any given time ¢;. These two force
components may be considered as a summation of 12 individual component forces

due to the 12 dynamic coefficients of Eq. (7.1), as given below.

—Fe(ti) = fuze(ts) + frey(ti) + feoe(ts) + fory(ti) + Fmee(ti) + Frney(t:)
~Fy(t) = Sfue(ts) + fin(t) + fope(ti) + Fen(ts) + Frnye (i) + fmg(£:) (8.17)

Let at t;4; = t; + At, the incremental fluid force components in X and Y directions
be AF(t;) and AF,(t;) respectively.

Fe(t:+ At) = F,(t;)+ AF.(t)

F,(t; + At) F,(t;) + AF,(t) (8.18)

and the individual components of AF,(t;) and AF,(t;) are given below based on the
linear-force motion model of Eq. (7.1)

—AF () = Afiee(t:) + Afuey(ts) + Afeae(ti) + Afey(ti) + Afmee(ts) + A fmey(ts)
—AFR(t) = Afige(ti) + Afuy(t) + Afope(ts) + Aoy (t) + Afomye (&) + A Fmgn (£:)

(8.19)
The infinitesimal change in displacement (§z;, §y;) is given by,

bz; = z(t.- -+ At) - Z(ti)

by; = y(ti+At) - y(t:) (8.20)



The infinitesimal change in velocity (6z;, 8y;) is given by,

6z; =

by =

Similarly, the infinitesimal change in acceleration (62, 6¥;) is given by,

b, =

by, =

.’i!(t,' <+ At) - i(t;)

y(t: + At) — y(ts)

E(t.' -+ At) - :E(t,')

y(t: + At) — g(t;)
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(8.21)

(8.22)

From Eq. (7.1), the incremental fluid forces in terms of their individual components

are,

A fiee(t:)
A fuey(t:)
A fiye (t:)
A fi ()
A fae(ti)
A fery(ti)
A feye(t:)
Afan(ti)
A frae(t:)
B fmey(t:)
A fmye(t:)

Afmw(ti)

Kee(2(t:), y(4:))b2:
key (2(2:), y(8:)) by
ke (2(t:), y(8:)) 62
Ky (2(t:), y(t:)) Sy
Cee(z(t:),y(t:))62:
cev(2 (), y(t:)) 8y
cve (2(2:), y(t:))82:
Cov (2(t:), y(£:)) 63
Meo(2(t:), y(t:)) 84
mey(2(4), y ()63
mye (2(t:), y(£:)) 62

M., (2(:), y(t:)) o9

(8.23)
(8.24)
(8.25)
(8.26)
(8.27)
(8.28)
(8.29)
(8.30)
(8.31)
(8.32)
(8.33)

(8.34)
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At time ¢,,,, after n intervals of At, the incremental fluid force components at each

time step may be added in the following manner to obtain the total force components.

fhc: (ti+1)

Srey(tis1)
Fey(tisa)
Fay(tisa)
Jeee(tisa)
Jery(tis1)
Jove(tis1)
Jan(tisa)
fmee(tis1)
Fmey(tisa)
Frye(tis1)

S (tisa)

iKu(% vi)oz;

=1

3" ke (20, )00

=1

i kye (Zi, yi)6z;

=1
4\: K (24, i) by
=1

E C:e (zis yl)&it
=1

n

> oy (Ziy 1) 63

=1

Z": Cye(Ziy i) 62,

=1

Z ny(zi! Yi )63)!

=1

Z Mcc (zt’s y1)6£t

=1

> mey(zi,v:) 64

=1

f:m,.(z,-, ¥:)62;

i=1

z": My (zi, y:)65:

=1

(8.35)

(8.36)
(8.37)
(8.38)
(8.39)
(8.40)
(8.41)
(8.42)
(8.43)
(8.44)
(8.45)

(8.46)

For infinitesimal quantities At, (§z, 8y), (6z, 6y) and (62, §y), the summation may be

replaced by integration giving the following expressions.

Juee(t)

=(t)
[ Keelz,v)dz

(8.47)
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flt) = [ hle)dy (8.45)
frelt) = [ halev)de T
fonlt) = [ Klesp)iy (8.50)
furlt) = [ Curle,y)dé (8.51)
fem(t) = :(‘)C-u(z,y)dﬂ (8.52)
Jar(t) = :(t)cy.(z,y)di (8.53)
fonl®) = [ Cule,)ds (8.54)
frert) = [ Mua(z,y)az (8.55)
frel®) = [ muy(e,9)dg (8.56)
for®) = [ mpe(z,u)dz (8.57)
fonl®) = [ My(e)d (8.58)

These integrals for the case of a single DOF spring-mass-damper system are

shown in Figures 8.4-8.6.

8.3.5 Evaluation of Integrals

Computation of each of the Integrals in Egs. (8.51-8.61) requires the time history
of displacement, velocity and acceleration of the rotor center as a function of time
t. Since each of these curves may have any number of cycles, the following valid
assumptions are made to reduce summation errors assuming no hystersis loss.

When the displacement z(t) is zero the following terms are set to zero and the
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F.; f K(x) dx

Figure 8.4 Stiffness Force Integral

dx/dt

Figure 8.5 Damping Force Integral
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M(x)

F = J' M(x) d %/at®

dt x/ att

Figure 8.6 Inertia Force Integral

integration or summation starts from that instant.

Suee(z(t)=0) = 0

fm(z(t) =0 = 0 (8.59)
Similarly, when y(t) is zero the following terms are set to zero.

fin(y(t)=0) = 0

Juan(y(t)=0) = 0 (8.60)

Similar assumptions are made with respect to damping and inertia forces. At z(t)

equal to zero the following terms are set to zero.

n
=

fee(2(t) = 0)
fae(2(t) = 0)

i
o

(8.61)

and at y(t) equal to zero the following terms are set to zero.

Jo(y(t)=0) = 0
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Jn(y(t)=0) = 0 (8.62)
At Z(t) equal to zero the following terms are set to zero.

fmee(Z(t)=0) = 0

fre(2(t)=0) = 0 (8.63)

and at (t) equal to zero the following terms are set to zero.

Jmey (§(8) =0) = 0

o (§(t)=0) = 0 (8.64)

The effect of these initializations is to reduce the accumulation of errors as the
integration is performed along the displacement, velocity and acceleration curves.
In practice, zero values are never realized and a change in the sign of a variable is
considered for the above initializations.

8.3.6 Summation vs. Integration

In the simulations with this model, the summation approach is used. The time

step At is made very small so that the summation approaches the integration process.
At = — (8.65)

where 2, is the time period of the displacement curve.

8.3.7 Limitations of Method-I

The method developed in this section requires the evaluation of 12 integrals of
Eqgs. (8.51~8.61). For a general motion, integrating each of these integrals involves two
highly fluctuating functions. The integrand, which is a dynamic coefficient varying
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with displacement, and the limit of integration which is either the displacement,
velocity or acceleration curve. Since closed form solutions are unlikely, one has to
resort to numerical integration to evaluate these integrals. The accumulation of errors
over a period of time due to approximate summation or integration schemes as well
as due to inherent approximate nature of the model may lead to inaccurate results if
care is no taken to limit these errors. The parameter At is critical for the accuracy
of this model if summation scheme is used.

A number of cases using the above method are included in the simulations.

8.4 New Method-II

In this section, the method-1 is simplified to make the computation of the Integrals
in Eqs. (8.51-3.61) easier and more accurate.

The method-1 developed in the previous section has the following drawbacks.

e Difficult to integrate complicated displacement, velocity and acceleration pro-

files.
* Accumulation of modeling and integration errors as time progresses.

o Very small time step needed to maintain reasonable accuracy for summation.

In order to simplify the computation of these Integrals a few assumptions are
made regarding th? displacement, velocity and acceleration profiles. The main as-
sumption, to be verified, is that the previous time history of the motion has little
or no effect on the current state of motion for the bulk flow model used. Assuming
that the above statement is valid, the actual displacement, velocity and acceleration

curves may be replaced by approximate curves that are easier to integrate.
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The following assumptions are made regarding the displacement, velocity and

acceleration at any given instant of time.

1. The time history of displacement is neglected and only the current displacement
is used in the computations. The displacement is assumed to increase from gero

to the current value in a linear fashion gradually, and independent of time.

2. The time history of velocity prior to the current time step is neglected and the
velocity is assumed to be linear with respect to displacement, i.e., velocity is
initially zero when the displacement is zero and increases to the current value

as a linear function of displacement while retaining its direction.

3. A similar assumption is made about acceleration, i.e., acceleration is zero ini-
tially and attains its current value in magnitude and direction as a linear func-

tion of displacement.

as a function of the time-displacement curve.

8.4.1 Theory

As in the previous case, the incremental fluid forces at any given operating point
are are given by Eq. (7.1). At any given time ¢;, let the eccentricity or operating
position of the rotor be given by (e;, ¢;) or (z;,y:), velocity by (viy %) or (2i,4:) and
acceleration by (ai,m:) or (2, ).

The displacement is assumed to increase from (0,0) to (z;,y;) linearly. At any point

along this path, the displacements are given by,

z = ecosd;

Yy = e 8iﬂ¢.’ (8'66)
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where,

N~ e

& = z} + ¥

tang; = = (8.67)
and velocity as a function of displacement is given by,

T = v cosy;

Yy = vsiny (8.68)

where,

tany, = X%
Z;

v o= e (8.69)
€

and acceleration is given as a function of displacement as,

(1]
"

a cos);

L]
i

a sinyn; (8.70)

where,

tann; = !.'-
L
a = = (8.71)



The velocity profile may be rewritten as,

Z;

z = (z—')z
i = Gy
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(8.72)

i.e., the velocity is assumed to increase from (0,0) to the current value (Zi,9:) as a

linear function of the displacement curve. Similarly, acceleration increases from (0,0)

to its current value (Z;,yj;) as a linear function of displacement.

z;

z = (2.‘)z
y = (g—:)y

Using the above assumptions, the Eqs. (8.47-8.58) may be rewritten as,
e(ts = - eel¥y dz
fuelt) = [" Keu(2,y)

St = [ kufz,v)dy
frelt)) = [ hn(ziy)de

fen(t) = OVin(z,y)dy
fuelt) = [ Cuelei)(E)as

fmlt) = ["emlz)Eay
for(t) = [" eulz,g)( D)z
foalt) = [* Cula)(E)ay
fmu(ti) = L.‘Mu(z,y)(:—:)dz

famlt) = ["mlz) ey

(8.73)

(8.74)

(8.75)
(8.76)
(8.77)

(8.78)
(8.79)
(8.80)
(8.81)
(8.82)

(8.83)
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Solt) = [ me(z ) (e (8.84)
frlt) = [ M (e By (5.85)

The integration limits of the above integrals are much simpler as the velocity and
acceleration profiles are replaced by equivalent displacement profile which is a simple
function. These Integrals can be easily computed using any of the various numerical
integration schemes available. Two methods, one based on Simpson’s rule and other
based on adaptive quadrature integration are used in this study.

As compared to the original method, this simplified method has the following

advantages.

¢ Total fluid reaction force is computed at each time step instead of incremental

summation and this eliminates the problem of accumulation of errors.
o Integrals are easier to compute.

¢ The method is valid for any type of motion.
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CHAPTER IX

IMPLEMENTATION
Simulations involving various types of transient motion are used to study the
various approaches discussed in the previous chapter. The mode! used is a modified
Jeffcott rotor and is shown in Figure 9.1. It consists of a rotor floating in an annular
seal and is released from rest at time t = 0 . Various types of known varying loads

are applied to the rotor and the resulting motion is studied using the following four

different models.

1. Bulk Flow Model: This simulation is done by solving the actual set of seal
governing equations for transient fluid forces at each time step. The results

from this study are used as a benchmark to compare the results of the other
models.

2. Linear Model (¢ = 0): This simulation is done using the dynamic coefficients
computed at zero eccentricity, to compute the fluid forces. This is the model

currently in use at NASA/MSFC.

3. New Method-I: This simulation is done using the method described in section
8.1.

4. New Method-II: This is the simplified extension of method-1 and it assumes
approximate displacement, velocity and acceleration profiles to compute seal

forces.
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Figure 9.2 Rotor-Seal Model used for Simulation
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9.1 Simulation Model
The equations of motion for the system used for simulation are given by,

mi':(t) = Fo(t) + Fpuid-e(t)

my(t) Fy(t) + Fpuida-y(t) (9.1)

where z(t) and y(t) are the rotor displacements from centered position and m is the
mass of the rotor. The terms F,(t) and F,(t) are the two components of the applied
external load, and Fiiuig-e(t) and Fyuiq—,(t) are the fluid reaction forces computed
using one of the four methods mentioned above.

This set of second order differential equations are reduced to a set of first order
ordinary differential equations which are then integrated using a fourth order Runge-

Kutta integrator with adaptive step size.

alt) = =)
() = (1)
gs(t) = y(t)
u(t) = y(t) (9.2)
alt) = )
ms(t) = Fut) + Fruia-e(t)
@(t) = qt)
mgy(t) = Fy(t) + Fpuia-y(t) (9.3)

The initial conditions are given below.

at=0) = 0
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Q2(t = 0) = 0
g(t=0) = 0
at=0) = 0 (9.4)

At each time step in the above integration process, a routine which computes
the fluid force is called. The input to the routine is the current displacement, velocity
and acceleration of the rotor center. The output is the the X and Y components of

the fluid force. The mass of the rotor used in simulations is 45.4 kg (100Ib).

9.2 Time Step for Transient Analysis

In the simulations carried out with various models, the following time step is
used.
t

For the method-1, the following time step is used.

t
At = = 9.6
500 (5.6)

About 15-20 cycles of motion is studied for each simulation.

9.3 Fluid Inertia Coefficients

The model used to estimate the seal forces has four inertia coefficients M,,, Mey,
mye and M, to account for the fluid inertia forces. Of these m,, and m,, are almost
gero. Strictly speaking, the coefficients M,, and M,, have to be added to the rotor
mass in the above simulation model. These fluid inertia forces are relatively small
compared to the other terms even at high frequencies. To simplify the computations

these inertia coefficients are retained in the linear model and the acceleration at the
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previous time step is used to compute these forces. This approach is checked by
including the fluid inertia coefficients in the rotor mass and comparing the results.

The results indicate practically no change in the results even at very high frequencies.

9.4 Computation of Fluid Forces

In the simulations with bulk flow model , the fluid forces are computed by solving
the set of equations Egs. (8.1-8.3) for the pressure distribution p(z,B,t) which is
then integrated along the length of the seal to obtain the transient fluid forces. This
process is implemented in a continuous fashion from one time step to the next.

For linear model (e = 0) , the set of coefficients for zero eccentricity are used for
computing the seal forces. These coefficients are obtained from seal code TAMUSEAL-
Ir.

For new method-1 and new method-2 , the following procedure is implemented.
These two methods assume the availability of the 12 dynamic coefficients as contin-
uous functions of the displacement (z,y). Let these functions be specified by giee,

Gkey)r Jipe ctc., as shown below.

Kee(z,y)

Giey(Z,y) = kg(z,y)

Ghee(2,Y)

Gie(Z,¥) =  kel(z,y)

Giew(z,y) = Ky (z,y) (9.7)
gcae(zay) = C..(z,y)
Iy(Z,y) = coylz,p)

gevc(z’y) = c,.(z, y)
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Ian(Ty) = Culz,y) (9.8)
Imee(Z,y) = Mee(z,y)
gmtv(za y) = m.,(z,y)
Ime(2,y) = me(z,y)
gmw(zs y) = Mw(z’y) (9'9)

These curves plotted as a function of eccentricity e are smooth curves with gradu-
ally varying slopes. They have no discontinuities or abrupt changes in function values.
This property of continuous and smooth variation as a function of eccentricity enables
these curves to be easily fitted with cubic splines using only a few sets of data. These
splines can then be interpolated to compute coefficients at any given eccentricity.

A number of sets of dynamic coefficients at various eccentricity ratios starting
from 0 to 0.8 are computed using the seal code TAMUSEAL-III . About 10-12 sets of
dynamic coefficients at 0.05-0.1 eccentricity ratio increments are sufficient for accurate
interpolation of these coefficients for intermediate values. The increment is made
smaller for the higher eccentricity region as the coefficients vary more rapidly in that
region. The data in Table 9.1 is the data used for all the simulations cases.

These sets of coefficients are obtained at an eccentricity angle of zero, i.e., along
the X-axis. Using a transformation, it is possible to compute these coefficients at any
eccentricity (z,y) using the eccentricity angle ¢. This transformation method has
been discussed in detail in section 5.4. The same procedure is employed to compute
dynamic coefficients in the global coordinate system as required in the simulation
model of Eq. 9.1.
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9.5 Splines of Coefficients

About 12 sets of dynamic coeficients computed at various eccentricities and at gero
eccentricity angle are fitted with cubic splines. This enables the computation of
the dynamic coeficients in a pseudo-continuous fashion. For the case of a distorted
seal or a seal with a non-circular cross section a 2-D table will be required. The seal
parameters for seal unit 3-02 as given in Appendix E. A summary of these coefficients

at various eccentricities is given in Table 9.1.

9.6 Transient Analysis Simulation Code: TRANSEAL

The four different models described earlier are implemented in the transient analysis
simulation code TRANSEAL. The input to this code is the dynamic coefficients at
various eccentricities, seal parameters and time step At. The output consists of
the fluid forces, the 12 individual force components, displacements, velocities and

accelerations at each time step.
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CHAPTER X

RESULTS
To study each of the models described in the earlier chapters, various types of known
varying loads are applied to a rotor in an annular seal and the resulting transient
motion is studied. The loads applied to the rotor are divided into the following six

categories.

font

. Gradually applied loads (ramp function)
2. Harmonic loads (sinusoidal function)

3. High frequency loads (sinusoidal function)

[F-

. Suddenly applied loads (step function)

o

. Impulse or shock loads (impulse function)

6. Combination of the above loads.

10.1 Gradually Applied Loads (Ramp Function)

In this test case, a series of loads 1780N (4001b), 5340N (12001b) and 8900N (20001b)
are applied to the rotor in a vertically downward direction in a gradual manner.
The loads follow a ramp function while increasing from a zero load at ¢ = 0 to the
maximum load at ¢ = 0.05s. In practice, this type of load results from side loads.
Each of these cases are repeated for the four models and the results are plotted as
" comparison plots. For each case two plots are shown: the first plot includes the
time-displacement curve y(t) while the second plot shows the y-component of the

computed seal force Fy(t) as a function of time.
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The steady-state values of displacement y marked on the plots are obtained
separately from a seal code based on the dynamic analysis developed earlier. This
seal code solves the set of steady-state bulk flow seal governing equations to compute
these values. These expected steady state displacement values are included for the
purpose of comparison.

The comparison plots for this case are shown in Figures 10.1-10.3.

The external forcing function for this case is given below.

F(t) = —(20t)F. (0<t< 0.05s)
= -—F. (t>0.05s)

Fe(t) = 0 (10.1)

where F, is the constant load.

The results for all the three approximate methods show good agreement with
the bulk flow model for smaller load 1780N (400lb). For higher loads 5340N (12001b)
and 8900N (2000lb), as the eccentricity ratio exceeds 0.4, the linear model (e=0)
starts deviating from the actual model and this deviation increases as the eccentricity
increases. The displacement plot in Figure 10.3 for the 8900N (20001b) case clearly
shows the difference between these two models. Also, note the almost exact matching
of the results of the two new methods with those of the bulk flow model for all cases.

The plots for the fluid forces in Figures. 10.1-10.3 are all identical because the
rise time ¢, is much larger than the time period £, of the system. Therefore, the seal
reaction forces track the external load exactly in magnitude and without any phase
shift.

The following important conclusions can be drawn from these results.

1. The transient motion using bulk flow model converges to the expected steady
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state values exactly, thus verifying the transient analysis solution procedure.
The steady state values used for comparison are obtained independently using

a separate solution process.

. Linear model (¢ = 0) yields good results for small displacements. At higher
eccentricities (beyond 0.3-0.4 eccentricity ratio) there is a marked difference
between this model and the actual model (Figure 10.3). This example illustrates
the need for a Betta model than linear model (¢ = 0) for motion with large

eccentricities.

. The results of new method-1 and new method-2 exactly match with those of
the bulk flow model.

- On a more important note, unrelated to the transient analysis, these results
validate the solution procedure of the dynamic analysis developed in earlier
chapters, zeroth order as well as first order solutions. The results of this tran-
sient analysis establishes the equivalence between the bulk flow model based
motion and the corresponding motion described by the linear model of Eq.7.1
based on dynamic coefficients extracted from the first order solution. Generally,
it is taken for granted that these two solution match for small motion. These
results demonstrate, for the first time for seals, this equivalence. This exercise
also may be used as a check case for the first order solution to verify that the
dynamic coefficients extracted from the first order solution are indeed the cor-
rect coefficients. In other words, this study may be used as a check case for for

the solution procedure, zeroth and first order solutions.
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10.1.1 Steady State Seal Forces vs. Spring Forces

In a seal analysis, steady state seal forces are computed as function of eccentricity by
integrating the zeroth order pressure distribution along the length of the seal. The
two componenets of the seal force are used to estimate the load bearing capacity of
the seal. In the context of the new methods 1 and 2, these forces may be thought
of as forces due to spring stiffnesses as damping and inertia forces are non-existent
when the rotor is in a steady state operating position. The component forces fi.,
fieys fiye and fi, in the new method-1 and new method-2 represent the forces due
to direct and cross coupled stiffnesses.

Seal forces F, and F, shown in Figure 10.4 Seal forces F,.,;_. and F,eqi—y shown
in Figure 8.9 are computed using the seal code as a function of eccentricity along the
X axis. If the new analysis developed is accurate, these forces should be the same as
the spring forces given below.

Seal forces F, and F, shown in Figure 10.4 are computed using the seal code
TAMUSEAL-III as a function of eccentricity along the X axis. If the new analysis
developed is accurate, these forces should be the same as the spring forces given

below.

Faed—e = fkce + f’wv (10'2)

Friey = fim + fiw (10.3)

The plot in Figure 10.4 shows the steady state forces computed using both these
approaches. The results match exactly further validating the two new methods.
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10.2 Harmonic Loads (Sinusoidal Function)

In this test case, a series of loads at a frequency of 100Hz are applied to the
rotor. This type of forcing function is typical of the loading on the rotor due to an

unbalance. The external forcing function used for this test case is given below.

Fy(t) = F, sin(2nft)

F.t) = 0 (10.4)

where F, is the amplitude and f is the circular frequency in Hz.

The loads used are 1780N (400)lb and 5340N (12001b) at a frequency of 100 Hz.
The plots shown in Figures 10.6-10.9 refer to this case. There is excellent agreement
between the bulk flow model and the all the three approximate models for 1780N
(4001b) and 3560N (800lb) cases. For the 5340N (12001b) case shown in Figure 10.8,
the linear model (¢ = 0) starts to deviate from the actual model. However, the new
methods gives exact results.

An important conclusion that can be drawn from this case is that the the linear
model (e = 0) is accurate even for relatively large displacements provided the rotor
vibrates about the same static operating point and the set of dynamic coefficients used
correspond to that operating point. This is interesting since the basic assumption of
the linear model (e = 0) is that it is valid only for a small motion about the operating
point.

For the next case shown in Figure 10.9, the oscillating rotor is forced to move to

an eccentric position by the application of the following forcing function.

Fy(t) = (20t) F. + F, sin(2nft) 0 <t < 0.05s

= F. + F, sin(2rft) t > 0.05s
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F(t) = 0 (10.5)

where F, is a constant load.

This example (Figure 10.9) clearly shows the effect of the movement of the rotor

operating position away from the centered position as predicted by the bulk flow

mode] vis-a-vis the same motion predicted by linear model (e = 0) . There is an

appreciable difference between these two models. The two new methods give almost

exact results.

The following conclusions may be drawn based on these test cases.

. The example case in Figure 10.8 refers to the large eccentric motion type-1
mentioned in Chapter VII. The case in Figure 10.9 refers to large eccentric

motion type-2.

. An annular seal operates almost like a linear element for steady state motion

about a given static point.

. The linear model (¢ = 0) gives good results even for relatively large rotor
displacements (¢ > 0.4). For example, if the rotor is whirling about a static
operating point, this model yields acceptable results even for large displacements

if the set of dynamic coefficients corresponding to this operating point are used.

. However, the above statement is not true in the case of the transient motion
shown in shown in Figure 10.9 where there is actual movement of the center of

rotor to an eccentric position.

. The two new methods agree exactly with the actual model both for steady state

as well as transient operation.
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10.3 High Frequency Loads (Sinusoidal Function)

The rotor of the SSME turbopump runs at about 25000 rpm, i.e., about 417 Hz. Any
unbalance forces in the rotor system will vary as a function of this frequency. To study
the effect of such unbalance forces at very lﬁgh frequencies, different harmonic loads
at 500 Hz and 1000Hz are applied to the rotor and the transient motion is observed.
The loads applied are 2225N (5001b) and 15570N (35001b) at 500Hz, 17800N (4000Ib)
and 3560N (80001b) at 1000Hz.

The forcing function is similar to the previous case.

F(t) = F, sin(2rft)

F.(t) 0 (10.6)

The results are shown in Figures 10.10-10.12 for the 500Hz case and in Fig-
ures 10.13-10.14 for 1000Hz case. Again, as in the case of barmonic loads at 100
Hz, there is good correspondence between the bulk flow model and the other three
methods at both 500 Hz and 1000 Hz cases. Also, these results confirm that the two
new methods work at any frequency.

To look at the motion away from the centered position, the rotor is forced to
an eccentric position and the results in Figure 10.12 once again clearly show the
difference the linear model (e = 0) and the actual model. Also, the results of new
method-1 and new method-2 exactly match those of the actual model.

The external forcing function for this case is given below.

Fy(t) = (20¢t)F. + F, sin(2rft) (0 <t < 0.05s)
= F. + F, sin(2rft) (t > 0.05s)
Ft) = o ] (10.7)
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10.3.1 Fluid Inertia Forces at High Frequencies

The plots shown in Figures 10.10-10.14 may be studied to observe the effect of
fluid inertia forces at very high frequencies. The results of the three approximate
methods based on linear model compare very well with the bulk flow model results.
These results show that the effects of fluid inertia effects at very high frequencies do
not show any significant difference from the bulk flow model.

10.4 Suddenly Applied Loads (Step Function)

In this type of loading, the load is applied suddenly similar to a step function.
The resulting motion after the transient state settles to the gradually applied load
case discussed earlier. The loads applied are 1780N (4001b), 3560N (8001b) and 5340N
(12001b). This motion is almost similar to an impulse or shock load as the rise time
t. is much smaller than the time period Tn of the system. This is a good test case
for the two new methods because of the rapidly varying motion. The results for this
case are shown in Figures (10.15-10.17).

The linear model (¢ = 0) for 5340N (1200Ib) case in Fig. 10.17 shows that the
motion not only has a different overshoot but is also quite a bit out of phase and it
settles to the wrong steady state value. The new method-2 has some overshoot, but
maintains the phase and settles to the expected steady state value.

The forcing function for this case is,

F(t) =0 (t=0
= —F (t >0

F(t) = 0 (10.8)
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10.5 Impulse Loads (Impulse Function)

This form of excitation occurs over & very short period of time. Let ¢4 be the time
of force duration and ¢, the time period of the system. If ty < ¢, then the applied
force is classified as an impulse or shock load. Impulse is a force applied over a short

period of time and is defined as,

I = /o “ H(t) dt (10.9)

where f(t) is the forcing function and I is the impulse. The units of impulse are N-s
or N-ms. As long as t4 < t,,, the form of f(t) is not important.
The effect of an impulse on a mass-spring system is to give the mass an initial
velocity given by,
I
: = = 10.10
2(0) = — (10.10)

and an initial displacement of zero.
z(0) = 0 : (10.11)

where m is mass of the system.

In this example case, impulse loads of 2225N-ms (5001b-ms), 4450N-ms (10001b-
ms) and (18001b-ms) are applied at time ¢ = 0.025s and the motion studied. An im-
pulse of 2250N-ms (500 1b-ms) refers to an impulse function of a load of 2225N(5001b)
acting over a period of 1 ms. Of all the types of loading considered so far, this type of
load results in maximum overshoot and generally a very rapid varying motion. The
results for this case are shown in Figures. 10.18-10.21.

For motion at an eccentricity, the following forcing function is used. with F, =
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15001b and I = 5001b-ms.

Fy(t) = (40t)F, (0 <t < 0.025s)
= F.+15(t — 0.50) (¢t > 0.0255)

Ft) = 0 (10.12)

It is interesting to note that the transient motion predicted by linear model

(¢ = 0) in Figure 10.21 is almost 180° out of phase with the actual motion.

10.6 Combination Loads

For the final simulation exercise, all the different loads considered in the previous
simulations are applied simultaneously. The forcing function for this case is given

below.

F(t) = (40t)F. + F.sin(2nft) (0<t < 0.025s)

= F. + Fain(2nft) + I5(t—0.03) + I§(t —0.038) (0.025 < ¢ < 0.05s)

F.(t)y = 0 (10.13)
where

F. = 13001b

F, = 10001b

f = 500 Hz

I = 500 lb-ms

and the impulse is applied at ¢ = 0.03s and 0.038s.

The results for this case are shown in Figure 10.22.
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10.7 Comparison between Bulk Flow Model and Linear Model (e=0)

In Chapter VII, large eccentric motion of the rotor has been classified into the follow-

ing two types.

1. Motion with a large amplitude about a static operating point, such as oscillation

about the centered position.

2. A similar motion, but with center of the rotor moving in an arbitrary fashion

away from the center of the seal.

The results from this study confirm the following general observations for E.rgc'

eccentric motion.

1. Linear model (¢ = 0) gives good results as long the the rotor vibrates about a
static operating point, in this case the centered position, and the set of dynamic
coefficients used in the model correspond to this point. For this type of motion,
this model is accurate even for relatively large displacements (¢ > 0.4) and the
seal behaves like a linear element.

2. As this operating point moves away from the centered position, the results
start deviating from the actual model and these deviations get bigger as the

eccentricity increases, i.e. for € > 0.4.

10.8 Comparison between Bulk Flow Model and New Method

The new method-1 and new method-2 give almost similar results for motion with
smoothly varying displacement, velocity and acceleration profiles. For this type of
motion the summation technique of new method-1 works well. However, for motion
with rapidly varying displacement and velocity profiles with abrupt changes in func-

tion values (sharp peaks and valleys) the summation or integration process encounters
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problems in some cases. An example of this case is given in Figure 10.23. In this
simulation, an impulse of 1800lb-ms is applied to the rotor and due to the sudden
change in velocity and acceleration l.e., discontinuities in the motion, the results are
not accurate. Also, for new method-1 the time step At is critical for accurate evalua-
tion of the integrals in Eqs. (8.47-8.58) using summation method. The effect of time
step on the accuracy of this method is shown in Figure 10.24. The first case with a
fine time step gives exact results. The second case with a coarse time step results in
an erroneous simulation.

However, new method-2 is impervious to such problems as integration is carried
out only with respect to displacement and total fluid force is computed at each time
step.

The following observations may be made about these two approaches.

1. Theresults show virtually no difference between new method-1 and new method-
2, indicating that past motion has practically no effect on the current state of

motion for the bulk flow model used.

2. These two methods vastly simplify the computational procedure compared to

the bulk flow model

10.9 Conclusions

This work examines the differences between the linear model (e = 0) and the
actual bulk flow model for large eccentric motion of the rotor. This study confirms
considerable deviations between the two models as the rotor is moved to a large
eccentric position away from the center of the seal.

An innovative method to model the seal forces more accurately than the current

model is developed and tested extensively for various types of transient motion.
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The following tasks are accomplished in this study.

1. Developed transient analysis capability using the original bulk flow governing

equations.

2. Established the validity of the transient analysis procedure by comparing the
transient analysis results with the steady state results values obtained form

TAMUSEAL-III .

3. Established equivalence between linearized coefficients based transient motion

and the same motion as predicted by the original governing equations.

4. The linear model (e = 0) gives good results as long as the rotor vibrates about
the centered position or a fixed static operating point (with corresponding set of
dynamic coefficients). This model is valid even for relatively large displacements
about this point. For this type of motion, the seal almost acts like a linear

element.

5. However, if the rotor operating position moves away from the centered position
such as in a transient motion, the results show appreciable differences between
the linear model currently in use and the actual bulk flow model for eccentricity
ratios above 0.4, the point at which the linear model (e = 0) starts deviating
from the actual model, and there exists a need for a more accurate model in

this region.

6. Developed a new method and tested it for various types of transient motion.
This method is valid for any type of motion including motion at large eccen-

tricities.,
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7. For the bulk flow model , fluid inertia forces are not significant even at very

high frequencies.
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CHAPTER XI

SEAL CODES
To implement the analysis developed in earlier chapters, a series of codes were written
as a part of this research. All the following codes are currently being used at NASA
Marshall Space Flight Center as primary tools of seal analysis and design of the
interstage seals of SSME-ATD-HPOTP. Brief details of these various codes are given

below.

11.1 Tamuseal-]

o Concentric seal analysis.

Original Nelson and Nguyen model.

Straight, tapered and axially varying profiles.

Moody’s and Hirs’ friction models.

Constant properties.
e Very good agreement with check cases.

Runs on UNIX based workstation, VAX.

11.2 Tamuseal-II
¢ Eccentric seal analysis
e Constant properties.

o Improved dynamic analysis.
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® Moody’s and Hirs’ friction model.

Arbitrary profile, axial and circumferential.

Distorted seal profile analysis.

External load and eccentricity based analysis.

Efficient and better mathematical algorithms.

Good agreement with check cases.

Runs on UNIX based workstation, VAX, and CRAY.

11.3 Tamuseal-II]

Eccentric seal analysis.

Constant properties.

Variable properties from NIST12 (LOX and LH2)

Improved dynamic analysis.

Moody’s and Hirs’ friction model.

Arbitrary profile, axial and circumferential.

Distorted profile analysis.

External load and eccentricity based analysis.

Efficient mathematical algorithms.
¢ Good agreement with check cases.

® Runs on UNIX based workstation, VAX, and CRAY.
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11.4 Tamuseal-IV

e Eccentric seal analysis.

e Constant properties.

Variable properties.

Thermal Effects with variable fluid properties.

Improved dynamic analysis.

Moody’s and Hirs’ friction model.

e Arbitrary profile, axial and circumferential.

Distorted profile analysis.

e External load and eccentricity based analysis.

Efficient and better mathematical algorithms.

Very good agreement with check cases.

Runs on UNIX based workstation, VAX, and CRAY.

11.5 Transeal

This is the code developed for the study of transient analysis with an annular seal. It
has the ability to do the following simulations. Given time dependent displacement,
velocity and acceleration of the center of the rotor, the code computes the transient

seal forces as a function of time using one of the following four models.

¢ Original bulk flow governing equations.
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o Linear seal model (¢ = 0) with dynamic coefficients computed at zero eccentric-

ity.
o Using New Method-I.

¢ Using New Method-II.
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CHAPTER XII

CONCLUSIONS
In this work, a new dynamic analysis for liquid annular seals with arbitrary profile
is developed based on a method originally proposed by Nelson and Nguyen. The

following modifications are made to improve the original method.

1. Improved zeroth order solution based on cubic splines versus FFT method of
Nelson and Nguyen. The improved method shows better convergence at higher

eccentricities and yields solution for cases where the original method had failed.

2. A more exact first order solution based on continuous interpolation of first order

variables. A new set of equations are derived for dynamic analysis.
The analysis developed is extended for cryogenic seals for the following models.
1. Constant fluid properties.
2. Variable fluid properties.

3. Thermal effects (energy equation) with variable fluid properties (concentric

case).

A unified solution procedure that is valid for both Moody’s friction model and
Hirs’ friction model is developed. Dynamic coefficients based on external load speci-
fication are introduced for seals for the first time. The analysis can be used to model
seals which support a pre-load.

Arbitrary profile seals are discussed with reference to an elliptical seal. Unique
differences that exist between regular straight or tapered circular cross-section seals

and arbitrary profile seals with a circumferentially varying clearance are analyzed.
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A study on the effect of orientation of minimum film thickness system on computed
dynamic coefficients is conducted. A general distorted interstage seal of SSME-ATD-
HPOTP is analyzed as an arbitrary profile seal and the results are compared to an
an average clearances profile seal.

The predictions of current analysis are compared with a number of experimental
and theoretical cases from seal literature. Based on the comparative studies the

following conclusions are drawn.

1. Good comparison with original Nelson and Nguyen method (1988a,1988b). Bet-

ter results for cases where the original method had failed.

2. Good comparison with Childs’ (1985) Hir’s and Moody’s friction model based

analyses.

3. Good comparison with Scharrer and Nelson (1990), except for a discrepancy

noted in their results.

4. The deviation between current analysis (variable properties) and San Andres’

analysis increase with eccentricity. These differences vary from case to case.

5. The difference between current analysis (thermal effects with variable proper-

ties) and San Andres agree well for the concentric case, except for cross coupled

stiffness.

The work on transient analysis with an annular seal examined the differences
between linearized coefficients based motion and the actual motion based on bulk
flow governing equations. This study confirms considerable deviations between the
two models as the rotor is forced to an eccentric position of € > 0.4.

Based on this study an equivalence is established between linearized coefficients

based motion and the same motion based on bulk flow governing equations for small
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motion. This study may be used to compare the accuracy of solution (dynamic
coefficients) of a particular dynamic analysis.

An innovative method to model non-linearities in seal forces is developed. This
method models seal forces more accurately than the model based on a single set of
dynamic coefficients. This method is tested extensively for various types of transient
motion.

The following conclusions are drawn from this study.

1. Linear model (¢ = 0) gives good results as long as the rotor vibrates about the
centered position or a fixed static operating point (with corresponding set of
dynamic coefficients). This model is valid even for relatively large displacements
about this point. For this type of motion, the seal almost acts like a linear

element.

2. However, if the rotor operating position moves away from the centered position
such as in a transient motion, the results show appreciable differences between
the above linear model and the actual bulk flow model, for eccentricity ratios
above 0.4. This is roughly the cutoff point where the linear model starts devi-
ating from the bulk flow model. and there exists a need for a more accurate

model in this region.

12.1 Future Work

One of the areas of improvement for the bulk flow model is the treatment of entrance
and exit loss coefficients. Typically, in a seal analysis these coefficients are treated as
constants. It is an accepted fact that these loss coefficients vary with the inlet and
exit geometries and Reynolds number. A more realistic model for this loss coefficient

would be a varying coefficient around the inlet and exit circumferences.
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The other area of improvement for high pressure seals is the inclusion of elastic
deformation of the seal housing. Some preliminary studies (Iwatsubo, 1987) have
already been done in this area. Future work should combine all these various analyses

into a combined thermoelastic-hydrodynamic (TEHD) analysis.
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APPENDIX A
CONSTANT PROPERTIES MODEL

Zeroth Order (Steady State) Equations:

poho 0 0 %L;"- Fu
0 poho‘uo 0 %’f‘ = Fv (Al)
pohous 0 hy | | % F,
where
_ Oho Povo Oho poho Ovg
Bo= —owgs - 38 R 98 (A-2)
F = Pohovoavo hoa_Po
° "R 88 R 6p
= polfro Vb + (o —wl + fuRud 1 ) (A3)
pohove v
B = -TF

— po{fro (v — )\/ + (vo ~w)? + f.o—v uj + v3} (A.4)

First Order (Perturbed) Equations: Continusty:

Bug hoavo Bho 13ho _ Ohy Ohy vo Gho
et ReE t et RB™" = "& "% TR
ou 1 6v

Azial Momentum:

Buy hoapo hovoauo
5z T bz T R 3B + hop?

houo—— + Awur + Aovs = Aphy (AL6)

6t

Circumferential Momentum:

ho‘vo Ovo ho 6po dvo —
E 55 + ooF 3B + h°6t + Byu; + B,v; = Bph, (A.7)

hou o
Oz
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The coefficient expressions A,, 4, etc., in the above first order equations are defined

below.

Oug Foo Fro
Au - hoa— + u (U.o + UrO) + (FanO + FroUrO) (A-S)
_ hoauo F F,o
A, = R 3ﬂ uo{voU + (vo— )Uro} (A.9)
1 8py Bup vo 6vo
= -0 _ y=2 . 07 H. U, A.10
A, > Uo7~ 7 3[3 (H.oU.o + H.oU.o) ( )
_ Gvo F F
Bu = h 6 + UO{UOU.O + (‘Uo—w)Uro} (A.ll)
ho 8vo 2Fco 2Fro
= B oo - ol ¢ rolr 1
B, Rap t W+ (- w)PDE + Rl + Bulh (A2
B, = L% _ O  wdw
PT Rpo 8 ~ "8z ~ RO
-+ h—o{‘voH,oU,o + (vo—‘IU)H,oU,o} (A13)
(A.14)

with further definitions for Moody’s and Hirs’ friction factors and their dependent
terms, f,0, fro, Fuo, Fyo etc., given in Appendix D.

The first-order governing equations are expressed in terms of the a;(z,8) and

bi(z,8) functions as;

ho 6a1 - Bh uo 6’1 ho‘vo 603 houo aa;
> Bz (A..—uo—)as+howa4( R 6ﬂ)a‘ E o3 +—5 38
- af(An+ uo(-— + Ilig;))co B — amﬂ] (A.15)
%% — howas + (A, — uo—) a4+ (4, — ';gz)ae = cowugcosf — hj;o Z‘;
houo Gag
+ R o8 (A.16)
Oas Bh 1 ah 16v vo hoaas

ho (A.17)

Bz T8z Rop% °‘[( 758 "7 - Rap
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h°-6_z + an + E@Ge = —c,wcosf3 — E% (A.18)
Oag hy 8ay  hovo Oag
ho‘uog + Buas + B,ag + howag = —c, Bucosf — Ea_ﬁ - —R_ﬁ (A.19)
606 _ ho aaz hovg Bag
houo—a—; + Byas — howas + Byag = _Ti; EY: - R 6_5 (A.20)
ho abl Bh Up 6’2 _ . ho‘vo 6b3
5> oz T (Au—tog-)bs + howby + (4, — Rapl = ~owusinf - — 33
hougo 8bs
7 55 (A.21)
ho 8b, ~ Bh uqg Oh _
S oz howbs + (A, — HOE)IM + (Ao - Ea_ﬂ)bﬁ =
Ou 18v, . . UoVp hovo by houo Bbe
-C-[(Ah + uo(a + E%))smﬂ + Tcoaﬂ] - T‘a—ﬂ + -R—a—ﬂ (A.22)
8b; Ok 16h . ho Obs
hoa—z -+ Eba + Eg-ﬂ—bs = cowsinf — E% (A.23)
6b4 8h 1 Bh Yo 611. 1 3v . ho abs
ho Bz + b:b‘l + —R'%be = C.[Ecosﬂ + (E + ﬁ‘oTﬂ')’mﬂ] - E% (A.24)
abs _ ho 8b1 hovo abs
houog + Bubs + By bs + howbs = —ﬁ;% - R 88 (A.25)
oo 3% + Buby — howbs + Bube = —c, Byaing — 1000 _howdbs o0

Ro88 R 88
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APPENDIX B

VARIABLE PROPERTIES MODEL

Zeroth Order (Steady State) Equations:

[
poho 0 houog-ﬁ %‘f F,
0 pohoug O 2w 3 = | F, (B.1)
pohouo 0 ho %‘1 i F,

where

_ Oho _ povoBho _ pohoBuo _ hovo Bpo Opo
Beo= g - %~ R~ Romag (B2

Poho‘vo 3”0 ho aPo

R 6ﬂ R OB
- Po{fro?\/uo + (vo —w)? + f.o%\/ uj + vi} (B.3)
pohovo Ovg
5 R 6ﬂ
- polfa 2 S W + feEr ) (B4

First Order (Perturbed) Equations: Continuity:

povo Oh1  poho Ovy  woho Op; Bu, op, Op
R3ﬂ+ R3ﬂ+ R6ﬁ+p°h°6z+u°h°6 +hoAp16t
6h b6h
+Asu + Aovy + Appy = —Pouo'a—l - ;oo-g1 - Anhy (B.5)
Azial Momentum:
hovo Ou, ho 6py Ou,
—R—aﬂ ho‘"-o Bz + 20 Dz + ho N + Byu; + B,y + Bpp;

= Buh, (B.6)
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Circumferential Momentum:

hovo 6‘01 ho apl 6‘01 avl
R aﬂ PoRﬁ + houog + hoT?t_ + Cuul + val + Cppl

= Ciphy (B.7)

The coeflicient expressions A,, A, etc., in the above first order equations are

defined below.

_ aho 6po
A, = Pog + hog (B.8)
= Podho  hobp
= R T g (B-9)
_ o 6}10 hoa‘vo 6ho Buo
4, = RO + E% + uog + hoaz (B.10)
o)
Ay = B—Z: . (B.11)
A, = AA, (B.12)
_ ﬂq% ﬂaPo Guo dpo
Ay = R 33 + R 38 + Po—g + uoaz (B.13)
0
Ay = 5;—: (B.14)
0
Ay = 6—;‘3 (B.15)
— auo 2 Fn F‘o
B, = bk 5, T “°(U_,o + U.o) + FooUo + FoU, (B.16)
ho Ou, F,, F.,
= hodu Fo _ 17
B R o3 “o{voU.o + (v w)U,o} (B.17)
h
B, = -3 - 2GulUwn + G.ol} (B.18)
Po Po
_ 1 8py Sug vo Oug Uup
B, = T ez Yo Ro8 + ho(H.oU.o + H,oU,) (B.19)
B“ = g(G,oU,o + G,oU.-o) (B.20)

B, = B,Ay + B,A,; - (B.21)
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F,,
Cu = ho% + uo{vo + (‘vg— ) } (B.22)
0z Uk
— hoavﬂ 2F‘° _ F
Cv = R 6ﬁ Yo —:; + (vo ) U,. + FaanO + FroUrO (B-23)
_ 1, ho Opo
C, = Po[RP EY;] + {v0Gals + (vo w)GroUro}] (B.24)
1
C“ = “—{vOGcOUnO + (‘Uo—‘w)G,oU,o} (B.25)
0
c, = -1 0pm % _ %bw
P Rpo 8 ~ "5 T Rag
+ h—{voH.oU.o + (vo — w)H,oU,o} (B.26)
0
Cp = CpApl + CpAul (B.27)

with further definitions for Moody’s and Hirs’ friction factors and their dependent
terms, f0, fr0, F,o, Fro etc., given in Appendix D.
The first-order governing equations are expressed in terms of the a;(z,3) and

bi(z, B) functions as;

1 fa Po Po
houo(A4, 1—u—%) 6:1 + (Ap—aBp)‘h + howApa; + (A, - u—oBu)ds
h
- °wp°a4 + (A, - %)a; = — c";;voainﬂ + c.Ancosf
hoPo Jas ho‘voApl da, Cepo B hopovo Oas
R 98 E 8 T "u Rus 08 (B.28)
1 6a how
houo(API - 'u_%) 9z 2 hO“’Aplal + (A? ,,) a + uopo as
_p _p - — _ hopo Bas
+ (A uoB.,)m + (4. uoB.,)ae = — cupowcosf R o8
_ hovo Baz + hopovo 804 (B29)

R 68 Ruy 068

i)
hopo(l -A,lug)ﬁ <+ (A.’— poqu,lB,)al + howA,,laz

+ (Au — pouodniBu)as — howpoApae + (Au— pooApB,) = —SPO% 4ins




253

hopo 0 h 3]
+ c.Apcosf — °£° ;ﬂs goAﬂ—;ﬂ—l + coBnpouoA,icosf

(B.30)

hapouovo A Oas
R Y]

pouoAp Bplaz + howpouoA,ias

hopoaﬂ

R 08
(B.31)

Sa,
hopo(1 — u3A,1) aaz — hwApa, + (4, —

+ (Au — powod,Bulay + (Ao — pouoApBo)ae = — cepowcosf

hovo Oa, hopouovo Oa,
A,1 o8 + 7 A a8

5 ,
houo-(% + Cpa; + Cuaz + Coas + howas = —c.Chcosf3
_ hovo 605 hO aal (B-32)

R 88  Rpo 08

hovo 8
houo + dez + Cuaq — howag + Coag = -— :ogﬂg
ho 602
- —_——— B.33
Bpop &%
1. 6b A
bova(Ap = )52 + (Ap= ZB)bs + (A= 2BL)ay — 200,
_Po hopo Obe hovo Qﬁ
+ (4. 0)bs = —c.powsinf — Taﬂ R —An 58
h Ie)
;;::o% (B.34)
1.8 h
houo(A,l— )a"’ howdpby + (A= 2B,)p, + 2P,
+ (A= 2B+ ‘;;B")"' = “’1’; %cosB + coAnsing

hoPovo 0b,
Fue 53 (B.35)

_ hoPo 555 hovoApl 552 C-PoBh .
R 8ﬂ R 38 + ” sinfl +

8bs
hopo(1 — luo) + (Ap — pooAnBp)bi + howA,b:
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+ (Ay — poroAnBu)bs — howpoApibs + (Ay — potioAn Bo)bs = copowsinf
_ hopoa_ba_ ho‘vo 3b1 hopo‘UQ‘voA 6b4

"% Rt R " (B.36)

%
Oz
+ (Ay — pouoAp Bu)be + (A, — pouoApnBy)be =
hopo ?._t.’i hovo

hOPO(l"'“gApl) - hoUApxal + (A,—Poquan)bz + howpoqup1bs

capovo

cosfl + c.Apsinf

abz hapouovo 6b4

- "%~ TR Angy * Buednsing + —p Angg (B3T)
houo%bf 4 Coby + Cubs + Cobs + howbs = — h‘;;“%%
—%%% (B.38)
oo o + Cyby + Cuby — hasbs + Coby = —.Casing
hovo 8bs ho O (B.39)

"R 6B Rpo 88



THERMAL EFFECTS WITH VARIABLE PROPERTIES MODEL

APPENDIX C

Zeroth Order (Steady State) Equations:

poho
0
pohouo

0

where

1 ¢ 3 r 1
0 ho‘u.ogﬁ houog% %‘:' Fu
pohoto 0 0 %‘;‘ | F,
{ b—{
0 ho 0 % F,
0 Thehouo —poCohouo | | F2 | | Fr |

_ Ohy _ Povoaho _ Poho% _ hovoapo apo
potie gz R RO R modB
_ hovo 8p0 8T

R 8T, 68
Pohovo 300 ho Q&
"R aﬂ R a8

~ polfug Vil +18 + v/l + (vo— w)?)

_ pohovo %

R 48

- Po{f-o%g\/“% +v3 + f,ow—)\/ug + (vo — w)?}
hovo 0T hovo 6?0

pOCPT 58 = Tofo—— R aﬂ + Q.

-—wR[L‘.;?ﬁ + £ f.oR _(w )frORrO}]

- uoPo{foO—\/"'o +v5 + f'ogg\/“o (”" - w)’}
- voPo{f.o—\/“o +v§ + frO \/“o + (vo — w)?}

The first order equations are given in Appendix B.
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(C.3)

(C.4)

(C.5)



APPENDIX D

FRICTION FACTORS

term Moody’s Model Hirs’ Model

foo | foors = 22281+ (10%5« + 1085 )1/3] foom = n,RY

fro | from = S2E8[1 4 (1048 + 10°L)1”] from = . Ry

90 | GooM = u;%}'g(m‘h +10°5-)"*% | gwom = —m,n,[R,0]™
gro | Grop = ROEEAC (104 ex 4 108 1)-2/3 | g o5 = —m.n, [Reo]™
heo hoomr = 2958(104 5 +10°2-)* | hyom = —m,n,[Rpo]™
hyo heou = 29E(10%82 +10°5-)"/2 | hoom = —myn, [Roo]™
F,, feom/2 feom/2

F,., fron /2 feom /2

Geo goon /2 9wom /2

Gro grone/2 grom [2

H, hoon/2 heor/2

H,, hone/2 heom /2

Foo (frone — geonr)/2 (foom — 900m)/2
F, (fronr — gronr)/2 (from — grom)/2
Uso Vud + (vo — w)? Vi + (vo - w)?
R, 32:? u? + v} 3?;'1 ul + v
R teobe  fud + (vo — w)? 2esho , fud + (vo — w)?
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APPENDIX E

CLEARANCE FUNCTIONS FOR ELLIPTICAL SEAL

The clearance functions for the elliptical seal are given in the next table as;

straight profile

linear profile

quadratic profile

fl(z) =a

fz(z) =b
8L =

9

-]
% =0

ag=R+g¢

fi(z) =a; + a2z
fa(z) = by + bz

8:=az
% — s,
ay=R+¢

f1(z) = a1 + a2z + a;2?
f2(z) = by + byz + byz?
%é:a2+2a3z

82 = b, + 2bsz

a3 =R+ ¢

a; = F(c. — 4cm + 3¢))

as = (e — 2¢m + &)
b=R+(1-6)c

b, (1 - 68)(ce — 4em + 3c)
by = £(1 — 8)(ce — 2em + &)

o

Gradients of the clearance function for elliptical seal are given by;

c(z,8)

8c

0z
dc

a8

V(fi(z)eosB) + (faolz)sinB)* — R

fificos?B + faf,sin?f

V(ficosB)? + (fa8inB)’

(fi — fi)cosBsinf

V(ficosB)* + (fasinB)?
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APPENDIX F
EQUATION OF STATE

The modified Benedict-Webb-Ruben Equation of state is given below.

p = pRT +
P(GOT + GR)T? + G(3) + G@)/T + G(5)/T?) +
PG)T + G(7) + G(8)/T + G(9)/T?) +
PHGIOT + G(11) + G(12)/T) + p*(G(13)) +
P(G(14)/T + G(15)/T*) + p'(G(16)/T) +
PHGIT)/T + G(18)T?) + p°(G(19)/T?) +
P (G(20)/T* + G(21)/T?) & +
P (G(22)/T? + G(23)/T*) ™ +
P (G(24)/T? + G(25)/T%) ¢ +
P (G(26)/T* + G(27)/T*) &” +
P (G(28)/T?* + G(29)/T®) e +
P*(G(30)/T* + G(31)/T* + G(32)/T*) & (F.1)

The expression for viscosity is given by,

B = w(T) + m(T)p + pa(p,T) (F.2)

Bo = )': G, (:)T1-9/3 (F.3)
m(T) = ;:(1) + F.(2) {F.(3) — In(T/F,(4))¥ (F.4)
pr(p, T) = eFeT) . GT) (F.5)

Flp.T) = E(1) + E()H(p) + E(3)° +
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E,(4)H(p)/T* + E.(5)p"*/T"* +

E.(6)/T + E,(T)H(p)/T (F.6)
G(T) = E(1) + E(2)/T (P.7)
H(p) = p*p — E.(8))/E.(8) (F.8)

The variation of density with respect to pressure (isothermal case), gﬁ (1/ % ) is

given as,

op

5, = BT+

20(G()T + G(2)T'* + G(3) + G(4)/T + G(5)/T?) +
30*(G(6)T + G(T) + G(8)/T + G(9)/T?) +
4p*(G(10)T + G(11) + G(12)/T) + 5p*(G(13)) +
60°(G(14)/T + G(15)/T?) + 70°%(G(16)/T) +
80"(G(17)/T + G(18)T?) + 9o%(G(19)/T?) +

{3 +290*}(G(20)/T* + G(21)/T°) & +

{50* + 2v¢°}(G(22)/T* + G(23)/T*) & +

{76® + 290°}(G(24)/T? + G(25)/T®) &* +

{90 + 27p0}(G(26)/T? + G(27)/T*) &7 +

{11p'0 + 27p'2}(G(28)/T* + G(29)/T°) ™" +

{1302 + 29p'4}(G(30)/T? + G(31)/T* + G(32)/T*) &  (F.9)

The variation of viscosity with respect to pressure (isothermal case), %ﬁ (%ﬁ x

I

)

is given below.

g.’i . ] F(p,T) 2_}1 i l



oH
Op

0.1 1
+ 5 iB3) + Bu(8)g3 ]

1
B

0
0

;.i{p — E,(8)} + p°°]
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(F.10)

(F.11)

(F.12)
(F.13)

(F.14)

(F.15)
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APPENDIX G

LIQUID SEAL DATA



The following data is for Childs and Lindsey (1993)

Seal Data for Childs/Lindsey (1998) Case

seal length, L

rotor radius, R

<

Ce

fluid

density, p

viscosity u

pressure drop, Ap

rotor speed, N

friction factor

relative roughness e,/2c,
relative roughness e, /2c,
pre-swirl ratio

inlet loss, §;

exit pressure recovery, £,

13.13 mm

76.20 mm

nominal values are given in Chapter VI
for measured values see Lindsey (1993)
water at 54.5°C

985.25 kg/m?

0.5268x10~2 Pa-s

1.38 Mpa, 2.41 Mpa, 3.45 Mpa

10200 rpm, 17400 rpm, 24600 rpm
Moody Model

0.001 (rotor)

0.001 (stator)

see table in Lindsey (1993)

0.1

1.0
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The following data is for Childs and Kim (1985) case.

Seal Data for Childs & Kim (1985) Case

seal length, L
rotor radius, R
G

Ce

Ce

fluid

density, p
viscosity u
pressure drop, Ap
rotor speed, N
friction factor
roughness m,,n,
roughness m,,n,
pre-swirl ratio

inlet loss, §;

exit pressure recovery, £,

16.66 mm (0.656 in)
48.39 mm (1.905 in)
0.224 mm (0.0088 in)
0.158 mm (0.0062 in)

0.191 mm (0.0075 in)

liquid oxygen

1121.26 kg/m® (70.0 Ibm/ft?)
1.292x107* Pa-s (2.70x107° Ib-s/ft?)
32.26 MPa (4700 psi)

23700 rpm

Hirs Model

-0.0980, 0.01091 (rotor)

-0.0433, 0.03120 (stator)

0.3

0.1

1.0

263



The following data is for Sharrer and Nelson (1990) case.

Seal Data for Sharrer & Nelson (1990) Case

seal length, L
rotor radius, R
<

Ce

Ce

fluid

density, p
viscosity p
pressure drop, Ap
rotor speed, N
friction factor
roughness m,,n,
roughness m,,n,
pre-swirl ratio

inlet loss, &;

exit pressure recovery, §,

22.20 mm (0.874 in)

42.50 mm (1.673 in)

0.381 mm (0.015 in)

0.127 mm (0.005 in)

0.127 mm (0.005 in)
liquid oxygen

1124 kg/m?® (70.0 1bm/ft3)
1.34x10™* Pa-s (2.70x10~° 1b-s/ft?)
44.82 MPa (6500 psi)
30000 rpm

Hirs Model

-0.2500, 0.0790 (rotor)
-0.1360, 0.0697 (stator)
0.8

0.25

1.0

264
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The following data is for Scharrer and Nunez (1989) case.

Seal Data for Sharrer & Nunez ( 1989) Case
seal length, L 45.70 mm (1.8 in)
rotor radius, R 45.50 mm (1.79 in)
nominal c; 0.107 mm (0.0042 in)
nominal c, 0.089 mm (0.0035 in)
Ce 0.089 mm (0.0035 in)
fluid | liquid oxygen
density, p 1124 kg/m?® (70.0 Ibm/ft?)
viscosity u 1.34x107* Pa-s (2.70x 10~ 1b-s /ft?)
pressure drop, Ap 14.93 MPa (2165 psi)
rotor speed, N 37360 rpm
friction factor Hirs Model
relative roughness m,,n, -0.25, 0.079 (rotor)
relative roughness m,,n, -0.136,0.0697 (stator)
pre-swirl ratio 0.6
inlet loss, §; 0.25
exit pressure recovery, £, 1.0
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The following data is for Jenssen (1970) case.

Seal Data for Jenssen (1970) Case
seal length, L 50.80 mm (2.0 in)
rotor radius, R 24.76 mm (0.975 in)
Ci 0.272 mm (0.0107 in)
Ce 0.272 mm (0.0107 in)
C. 0.272 mm (0.0107 in)
fluid water
density, p 1000 kg/m® (62.43 Ibm/ft?)
viscosity p 1.30x10~% Pa-s (2.72x107° 1b-s/ft?)
pressure drop, Ap 0.344, 1.034, 1.724 MPa (50,150,250 psi)
rotor speed, N 3000, 5000, 7000 rpm
friction factor Moody Model
relative roughness e, /2c, 0.0 (rotor)
relative roughness e,/2c,  0.0000748 (stator)
pre-swirl ratio 0.3
inlet loss, §; 0.4
exit pressure recovery, { 1.0
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The following data is for Falco et al. (1986) case.

Seal Data for Falco et al. (1986) Case
seal length, L 40 mm (1.57 in)
rotor radius, R 80 mm (3.15 in)
¢ 0.36 mm (0.0142 in)
. 0.36 mm (0.0142 in)
C. 0.36 mm (0.0142 in)
fluid water
density, p 1000 kg/m* (62.43 Ibm/ft%)
viscosity u 1.0x10"® Pa-s (2.10x107® 1b-5/ft?)
pressure drop, Ap 1.0 MPa (145 psi)
rotor speed, N 4000 rpm
friction factor Moody Model
relative roughness e, /2c, 0.0044 (rotor)
relative roughness e,/2c. 0.0083 (stator)
pre-swirl ratio 0.3
inlet loss, &; 0.3
exit pressure recovery, {, 1.0
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The following data is for Kanki and Kawakami (1984) case.

Seal Data for Kanki & Kawakami (1984) Case
seal length, L 200 mm (7.87 in)
rotor radius, R 100 mm (3.94 in)
Ci 0.50 mm (0.0197 in)
Ce 0.50 mm (0.0197 in)
c 0.50 mm (0.0197 in)
fluid water
density, p 1000 kg/m?* (62.43 1bm/ft®)
viscosity u 1.0x10"® Pa-s (2.10x107° Ib-s/ft2)
pressure drop, Ap 0.98 MPa (142 psi)
rotor speed, N 2000 rpm
friction factor Moody Model
relative roughness e,/2¢c, 0.0033 (rotor)
relative roughness e, /2c, 0.0033 (stator)
pre-swirl ratio 0.0
inlet loss, §; 0.1
exit pressure recovery, {, 1.0
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The following data is for Allaire et al. (1976) case.

Seal Data for Allaire et al. (1976) Case
seal length, L 40.6 mm (1.60 in)
rotor radius, R 39.9 mm (1.57 in)
Ci 0.14 mm (0.0055 in)
Ce 0.14 mm (0.0055 in)
Co 0.14 mm (0.0055 in)
fluid liquid hydrogen
density, p | 57.657 kg/m3 (3.6 Ibm/ft3)
viscosity u 7.4396x10~° Pa-s (1.5538x 107 lb-s/ft?)
pressure drop, Ap 7.26 MPa (1050 psi)
rotor speed, N 23700 rpm
friction factor Moody Model
relative roughness e, /2c, 0.00 (rotor)
relative roughness e, /2c, 0.000001 (stator)
pre-swirl ratio 0.5
inlet loss, §; 0.1
exit pressure recovery, {, 1.0




The following data is for San Andres et al. (1992)

Seal Parameters for San Andres et al. (1992)

seal length, L

rotor radius, R

G

Ce

Ce

fluid

density, p

viscosity u

inlet pressure, 7

exit pressure, p,

rotor speed, N

friction factor

relative roughness, e, /2c,
relative roughness, e, /2c,
pre-swirl ratio

inlet loss, §;

exit pressure recovery, ¢,

45.70 mm (0.656 in)

45.50 mm (1.905 in)

0.127 mm (0.00587 in)

0.127 mm (0.00581 in)

0.127 mm (0.00587 in)

liquid oxygen

variable prop. from NIST12 (MIPROPS)
variable prop. from NIST12 (MIPROPS)
18.31 MPa (2621 psi)

3.378 Mpa (483 psi)

37360 rpm

Moody Model

0.0 (rotor)

0.044 (stator)

0.6

0.25

1.0
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The following data is for elliptical seal case.

Seal Parameters for Elliptical Seal

seal length, L

rotor radius, R

7

Ce

Ce

fluid

density, p

viscosity p

pressure drop, Ap

rotor speed, N

friction factor

relative roughness, e, /2¢c,
relative roughness, e, /2c,
pre-swirl ratio

inlet loss, §;

exit pressure recovery, £,

16.66 mm (0.656 in)

48.39 mm (1.905 in)

0.069 mm (0.00273 in)

0.099 mm (0.00390 in)

0.069 mm (0.00273 in)

liquid oxygen

1041.7 kg/m? (65.03 Ibm/ft?)
1.296x10~* Pa-s (0.188x10~® 1b-s/ft?)
25.39 MPa (3681 psi)

22700 rpm

Moody Model

0.0 (rotor)

0.03 (stator)

0.2

0.33

1.0
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The following data is for the distorted seal case.

Seal Parameters for Distorted Seal Unit 9-01
seal length, L 16.66 mm (0.656 in)
rotor radius, R 48.39 mm (1.905 in)
average c; 0.149 mm (0.00587 in)
average c, 0.148 mm (0.00581 in)
nominal clearance c, 0.149 mm (0.00587 in)
fluid liquid oxygen
density, p 1041.7 kg/m® (65.03 Ibm/ft3)
viscosity u 1.296x10~* Pa-s (0.188x10-® 1b-s/ft?)
pressure drop Ap 35.25 MPa (5112 psi)
rotor speed, N 25000 rpm
friction factor Moody Model
relative roughness, e,/2¢c, 0.0 (rotor)
relative roughness, e,/2c. 0.8518 (stator)
pre-swirl ratio 0.2
inlet loss, ¢; 0.3
exit pressure recovery, & 1.0
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The following data is for seal unit 3-02 used in transient simulations.

Seal Parameters for Seal Unit $-02
seal length, L 16.6 mm (0.656 in)
rotor radius, R 45.7 mm (1.80 in)
i 0.174 mm (0.00687 in)
Ce 0.148 mm (0.00581 in)
nominal clearance c, 0.149 mm (0.00581 in)
fluid liquid oxygen
density, p 1041.7 kg/m* (65.03 1bm/ft*)
viscosity 1.296x10~* Pa-s (0.188x10~* Ib-s/ft?)
pressure drop Ap 35.25 MPa (5112 psi)
rotor speed, N 25000 rpm
friction factor Moody Model
relative roughness, e, /2c, 0.0 (rotor)
relative roughness, e,/2c, 0.8518 (stator)
pre-swirl ratio 0.2
inlet loss, &; 0.3
exit pressure recovery, {, 1.0




